Express the vector \[\left( \begin{matrix} \begin{matrix} x' \\ y' \end{matrix} \\ \begin{matrix} z' \\ t' \end{matrix} \end{matrix} \right) =\left( \begin{matrix} \begin{matrix} \gamma (x-vt) \\ y \end{matrix} \\ \begin{matrix} z \\ \gamma (t-vx/{ c }^{ 2 }) \end{matrix} \end{matrix} \right)\]
as a 4×4 matrix for scalars γ,v,c. Show that the determinant of this matrix is 1. Find the inverse matrix. Verify that the inverse matrix is precisely the Inverse Lorentz Transformation (with no boost in the y and z axes).
Solution
The Lorentz Transformation:
x′y′z′t′=γ(x−vt)=y=z=γ(t−vx/c2)
or
⎝⎜⎜⎛x′y′z′t′⎠⎟⎟⎞=⎝⎜⎜⎛γ00−γv/c201000010−γv00γ⎠⎟⎟⎞⎝⎜⎜⎛xyzt⎠⎟⎟⎞
Since the determinant is 1, we can just find the adjugate matrix. The adjugate matrix can be found by transposing the cofactor matrix. Hence,
⎝⎜⎜⎛xyzt⎠⎟⎟⎞=⎝⎜⎜⎛γ00γv/c201000010γv00γ⎠⎟⎟⎞⎝⎜⎜⎛x′y′z′t′⎠⎟⎟⎞
We retrieve the Inverse Lorentz Transformation:
xyzt=γ(x′+vt′)=y′=z′=γ(t′+vx′/c2)
Check out my other notes at Proof, Disproof, and Derivation
#Algebra
#LinearAlgebra
#SpecialRelativity
#LorentzTransformation
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
There are no comments in this discussion.