This discussion board is a place to discuss our Daily Challenges and the math and science
related to those challenges. Explanations are more than just a solution — they should
explain the steps and thinking strategies that you used to obtain the solution. Comments
should further the discussion of math and science.
When posting on Brilliant:
Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.
Markdown
Appears as
*italics* or _italics_
italics
**bold** or __bold__
bold
- bulleted - list
bulleted
list
1. numbered 2. list
numbered
list
Note: you must add a full line of space before and after lists for them to show up correctly
# I indented these lines
# 4 spaces, and now they show
# up as a code block.
print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.
print "hello world"
Math
Appears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3
2×3
2^{34}
234
a_{i-1}
ai−1
\frac{2}{3}
32
\sqrt{2}
2
\sum_{i=1}^3
∑i=13
\sin \theta
sinθ
\boxed{123}
123
Comments
All three done.
SPOILER BELOW
20: Make five separate unit squares.
16: Make a chain of five unit squares connected side-to-side.
6: Make a unit square, then put the two matches to divide the square into four smaller squares.
Suggest: The problem also mentions each solution must not break matches, no matches must remain (all matches must be part of each solution),
A primitive square (needing the least matches) must contain four matches.
With 20 matches you must make five separate primitive squares (no shared matches).
With 16 matches you must share matches, and some squares must be primitives.Four separate primitives can be formed using 16 matches. Therefore four matches must be shared. Stick the four primitives together, two up (Row1) and two below (Row2), Each primitive shares a match/edge with its horizontal and vertical neighbor). The large composite formed (two matches per side for the outer square) is the fifth square. The internal 'plus' of four matches are all shared.
With 6 matches, you must first make the primitive (4 matches used up). The remaining 2 matches must somehow create four more squares. This obviously means the solution must lie inside the primitive (outside the primitive, an additional primitive square can only share one match, and needs three more). When it becomes obvious what needs to be done, you need to think logically, and 'within' the box! The two matches will form a plus sign within the primitive. This necessarily means the matches will overlap (something the problem does not expressly forbid).
I have created matchstick puzzles, some of which can be found here. Send feedback.
http://www.problemsolvingpathway.com/pspsamples/PuzzledProblemSolving.pdf
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
All three done.
SPOILER BELOW
20: Make five separate unit squares. 16: Make a chain of five unit squares connected side-to-side. 6: Make a unit square, then put the two matches to divide the square into four smaller squares.
Suggest: The problem also mentions each solution must not break matches, no matches must remain (all matches must be part of each solution),
A primitive square (needing the least matches) must contain four matches.
With 20 matches you must make five separate primitive squares (no shared matches).
With 16 matches you must share matches, and some squares must be primitives.Four separate primitives can be formed using 16 matches. Therefore four matches must be shared. Stick the four primitives together, two up (Row1) and two below (Row2), Each primitive shares a match/edge with its horizontal and vertical neighbor). The large composite formed (two matches per side for the outer square) is the fifth square. The internal 'plus' of four matches are all shared.
With 6 matches, you must first make the primitive (4 matches used up). The remaining 2 matches must somehow create four more squares. This obviously means the solution must lie inside the primitive (outside the primitive, an additional primitive square can only share one match, and needs three more). When it becomes obvious what needs to be done, you need to think logically, and 'within' the box! The two matches will form a plus sign within the primitive. This necessarily means the matches will overlap (something the problem does not expressly forbid).
I have created matchstick puzzles, some of which can be found here. Send feedback. http://www.problemsolvingpathway.com/pspsamples/PuzzledProblemSolving.pdf