Mathematical Equation of the Week (MEoW)

Basically, post the weirdest, most beautiful or just the coolest mathematical equation you have ever come across. Here is an example:

eix=cosx+isinxe^{ix} = \cos{x} + i \sin{x}

Only one entry per person is allowed and the winner is determined by the number of up votes. Any down votes will be added on as up votes. Good luck, have fun and do math.

P.S.

Who understands the abbreviation? Why is it significant?

#Sharky #MathematicalEquations

Note by Sharky Kesa
6 years, 7 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

This number amazed me:

1741725=17+77+47+17+77+27+571741725= 1^7+7^7+4^7+1^7+7^7+2^7+5^7

Hasan Kassim - 6 years, 7 months ago

Log in to reply

Check out Narcissistic Number. There're even more than that!

Samuraiwarm Tsunayoshi - 6 years, 7 months ago

Log in to reply

Wow they are much!! Thanks for sharing that :)

Hasan Kassim - 6 years, 7 months ago

U Z - 6 years, 7 months ago

Log in to reply

Why is it fascinating?

Agnishom Chattopadhyay - 6 years, 7 months ago

Log in to reply

It seemed to me fascinating because

Oa=Ob,OA=OBOa = Ob , OA=OB

ABab=OAOa\frac{AB}{ab} =\frac{OA}{Oa}

PerimeteroftheouterpolygonPerimeteroftheinnerpolygon=n.ABn.ab=ABab=OAOa\frac{Perimeter of the outer polygon}{Perimeter of the inner polygon} = \frac{n.AB}{n.ab} = \frac{AB}{ab}=\frac{OA}{Oa}

CircumferenceofoutercircleCircumferenceofinnercircle=OAOa=Radiusofoutercircleradiusofinnercircle\frac{Circumference of outer circle}{Circumference of inner circle} = \frac{OA}{Oa} = \frac{Radius of outercircle}{radius of inner circle}

Thus

Circumferenceofoutercircleradiusofoutercircle=Circumferenceofinnercircleradiusofinnercircle \frac{Circumference of outer circle}{radius of outercircle} = \frac{Circumference of inner circle}{radiusof inner circle}

You know CircumferenceofanycircleDiameter=\frac{Circumferenceofanycircle}{Diameter} = the constantπ \pi

The approximate values were given as π=227 \pi = \frac{22}{7} , more accurate was 355113\frac{355}{113}

You can see now why it is fascinating@Agnishom Chattopadhyay

U Z - 6 years, 7 months ago

Log in to reply

@U Z Hahahaha. I was asking why Ramanujan's formula for pi is interesting to you. Isn't the one than comes from arctan more simple and beautiful?

Agnishom Chattopadhyay - 6 years, 7 months ago

Log in to reply

@Agnishom Chattopadhyay Many great mathematicians could'nt give its accurate value , and Ramanujan gave an interesting formula.

Which one is that which comes from arctan that is more simple and beautiful?

U Z - 6 years, 7 months ago

Log in to reply

@U Z π=4(113+1517+)\pi = 4(1- \frac{1}{3} + \frac{1}{5}-\frac{1}{7}+\cdots )

To get this, you should realise arctan(1)=pi/4 and the. Just substitute arctan(1) with its taylor series.

However, your formula is better because it has faster convergence)

Agnishom Chattopadhyay - 6 years, 7 months ago

Log in to reply

@Agnishom Chattopadhyay Gathered some information about Pi

Pi, written as π, equals 3.1415926… and its digits goes on forever, without any repeating pattern. Numbers with this property are called irrational numbers. Many ancient mathematicians – including the famous Pythagoras – were horrified when they discovered that such bizarre and ‘impure’ numbers exist.

Today many mathematicians believe that Pi has an even more curious property: that it is a normal number. This would mean that the digits from 0 to 9 appear completely at random, as if nature had rolled a 10-sided dice, again and again, to find the next digit. It also means that if you think of any string of digits, like 123456789, it has to appear somewhere in the digits of Pi – but you might have to calculate millions of digits.

We could even convert an entire book, like the works of Shakespeare, into a very long string of digits (a = 01, b = 02, and so on). If Pi is normal, this string must also appear somewhere in its digits. But even if we used all computers on Earth to calculate more and more digits of Pi, we would probably have to look for longer than the age of the universe… The First few Digits of Pi

3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628

0348253421170679821480865132823066470938446095505822317253594081284811174502841027019

3852110555964462294895493038196442881097566593344612847564823378678316527120190914564

8566923460348610454326648213393607260249141273724587006606315588174881520920962829254

0917153643678925903600113305305488204665213841469519415116094330572703657595919530921

8611738193261179310511854807446237996274956735188575272489122793818301194912983367336

2440656643086021394946395224737190702179860943702770539217176293176752384674818467669

4051320005681271452635608277857713427577896091736371787214684409012249534301465495853

7105079227968925892354201995611212902196086403441815981362977477130996051870721134999

9998372978049951059731732816096318595024459455346908302642522308253344685035261931188

1710100031378387528865875332083814206171776691473035982534904287554687311595628638823

53

There are many different ways to calculate Pi, some of which use sequences or series of numbers. One example is the following series discovered by Gottfried Wilhelm Leibniz (1646 – 1716). As you add more and more terms, following the same pattern, the result will get closer to Pi:

π=4143+4547+49411+π = \frac{4}{1} - \frac{4}{3} + \frac{4}{5} - \frac{4}{7} + \frac{4}{9} - \frac{4}{11} + …

Another sequence, published by Nilakantha Somayaji (1444 – 1544), is even better since it gets closer to Pi with fewer terms:

π=3+42×3×444×5×6+46×7×848×9×10+π = 3 + \frac{4}{2 × 3 × 4} - \frac{4}{4 × 5 × 6} + \frac{4}{6 × 7 × 8} - \frac{4}{8 × 9 × 10} + …

This formula was published by John Wallis in 1655:

π=2×21×23×43×45×65×67×87×89×π = 2 × \frac{2}{1} × \frac{2}{3} × \frac{4}{3} × \frac{4}{5} × \frac{6}{5} × \frac{6}{7} × \frac{8}{7} × \frac{8}{9} × …

Using powerful computers, Pi has been calculated up to 10 trillion digits (that’s a 1 with 13 zeros)! Because Pi is so easy to understand, yet important in many areas of mathematics, it enjoys an unusual popularity in our culture (unusual, at least, for areas of mathematics). There even is a Pi Day on 14 March or 22 July, since 227\frac{22}{7} is a close approximation to pi. @Agnishom Chattopadhyay

U Z - 6 years, 6 months ago

Log in to reply

@U Z Hm, I remember wishing 'Happy Pi Day' to my beloved ones

Agnishom Chattopadhyay - 6 years, 6 months ago

Prove it! :P Does anyone has a proof of it?

Kartik Sharma - 6 years, 7 months ago

Log in to reply

@Kartik Sharma Prove what? The faster convergence rate? Or the arctan formula for pi? Or Ramanujan's formula?

I have a proof for my formula

Agnishom Chattopadhyay - 6 years, 7 months ago

Log in to reply

@Agnishom Chattopadhyay Ramanujan's formula!

Kartik Sharma - 6 years, 7 months ago

Log in to reply

@Kartik Sharma I have not

Agnishom Chattopadhyay - 6 years, 7 months ago

For n=1,2,3,4,5,6n = 1,2,3,4,5,6 is true that:

14n+16n+45n+54n+73n+83n=3n+5n+28n+34n+65n+66n+84n14^n+16^n+45^n+54^n+73^n+83^n = 3^n+ 5^n + 28^n + 34^n+ 65^n + 66^n + 84^n

Jordi Bosch - 6 years, 7 months ago

Log in to reply

Can you tell me why is this happening?

Kartik Sharma - 6 years, 7 months ago

Log in to reply

Probably magic. You can check here to see more than that.

Samuraiwarm Tsunayoshi - 6 years, 7 months ago

Log in to reply

@Samuraiwarm Tsunayoshi Nice! Thanks for sharing!

Kartik Sharma - 6 years, 7 months ago

A number which rearrange itself upto multiplication by 6

142857 ×\times 1 = 142857

142857 ×\times 2 = 285714

142857 ×\times 3 = 428571

142857 ×\times 4 = 571428

142857 ×\times 5 = 714285

142857 ×\times 6 = 857142

Here is the interesting part

142857 ×\times 7 = 999999

Krishna Sharma - 6 years, 7 months ago

Log in to reply

17=0.142857...\frac{1}{7}=0.142857...

Christopher Boo - 6 years, 7 months ago

Cyclic number.

Sharky Kesa - 6 years, 7 months ago

eπ(163)262537412640768743.999999999999250076403203+7440.00000000000075\displaystyle e^{\pi \sqrt(163)} \approx 262537412640768743.99999999999925007 \approx 640320^3+744-0.00000000000075 Coincidence Coincidence

What do you think?

Credits : Tumblr (& The Incredibles), Ramanujan, Wikipedia.

B.S.Bharath Sai Guhan - 6 years, 7 months ago

Log in to reply

What's so special about this equation?

Christopher Boo - 6 years, 7 months ago

Log in to reply

This equation's speciality is that it uses irrational numbers to get very, very, very, very close to an integer. Check this one out: eππ=19.99909997918920\displaystyle e^\pi -\pi = 19.999099979189 \approx 20

Is that a coincidence or what?!

P.S: You might wanna check out 163 and Ramanujan's constant.

B.S.Bharath Sai Guhan - 6 years, 7 months ago

What does that even mean?

Agnishom Chattopadhyay - 6 years, 7 months ago

Log in to reply

That means that with irrational numbers, we can get as close as we want, at least for practicality's sake, to an integer. That just blows my mind!

P.S: You might want to check out Almost Integer for more such 'coincidences'.

B.S.Bharath Sai Guhan - 6 years, 7 months ago

From http://math.stackexchange.com/questions/8814/funny-identities?rq=1

π2=21234345656787π4=113+1517+19+π26=1+122+132+142+152+π332=1133+153173+193+π490=1+124+134+144+154+2π=222+222+2+22π=41+123+225+327+429+ \frac{\pi}{2} = \frac{2}{1}\cdot\frac{2}{3}\cdot\frac{4}{3}\cdot\frac{4}{5}\cdot\frac{6}{5}\cdot\frac{6}{7}\cdot\frac{8}{7}\cdot\ldots\\ \frac{\pi}{4} = 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}+\ldots\\ \frac{\pi^2}{6} = 1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\ldots\\ \frac{\pi^3}{32} = 1-\frac{1}{3^3}+\frac{1}{5^3}-\frac{1}{7^3}+\frac{1}{9^3}+\ldots\\ \frac{\pi^4}{90} = 1+\frac{1}{2^4}+\frac{1}{3^4}+\frac{1}{4^4}+\frac{1}{5^4}+\ldots\\ \frac{2}{\pi} = \frac{\sqrt{2}}{2}\cdot\frac{\sqrt{2+\sqrt{2}}}{2}\cdot\frac{\sqrt{2+\sqrt{2+\sqrt{2}}}}{2}\cdot\ldots\\ \pi = \cfrac{4}{1+\cfrac{1^2}{3+\cfrac{2^2}{5+\cfrac{3^2}{7+\cfrac{4^2}{9+\ldots}}}}}\\

Agnishom Chattopadhyay - 6 years, 7 months ago

Fermat's last theorem.. an+bn=cna^{n}+b^{n}=c^{n} for all a,b,c,n being integers gives real integral solutions only if n<=2 . The proof of the solution took 7 years of hard solitary work!!!

Ankit Chatterjee - 6 years, 7 months ago

Honestly, the equation that comes into my mind was

x2x1=0x^2-x-1=0

which is related to the golden ratio and the Fibonacci Sequence.

Christopher Boo - 6 years, 7 months ago

I loved this one as well.

ddx(ex)=ex\dfrac {d}{dx} (e^x) = e^x

Sharky Kesa - 6 years, 7 months ago

a2+b2=c2a^2 + b^2 = c^2 (Pythagoras Theorem)

Edit-These positive integers a,b,ca,b,c form the sides of a right triangle necessarily.

Anuj Shikarkhane - 6 years, 7 months ago

sin(2°×10n)sin(2°×10(n+1))π×10(n+2)\sin{(2°\times{10}^{-n})}-\sin{(2°\times{10}^{-(n+1)})}\approx\pi\times{10}^{-(n+2)}

Try to derive it and you'll see the magic.

Julian Poon - 6 years, 7 months ago

Log in to reply

Oh, nice. LOL

Calvin Lin Staff - 6 years, 7 months ago

Inclusion-Exclusion: Either you like something, or you don't.

If you like this, then upvote it, or else, if you don't like it, then downvote it.

Satvik Golechha - 6 years, 7 months ago

Log in to reply

For the first time, there is not a single downvote(see!) in such an open discussion.

Kartik Sharma - 6 years, 7 months ago

Log in to reply

Yeah there is. Check out Samuraiwarm's comment below. 1 downvote.

Sharky Kesa - 6 years, 7 months ago

-- You haven't read the note carefully. Despite me bolding the text, your despicable eyes have failed to read it --

Krishna Ar - 6 years, 7 months ago

Log in to reply

@Krishna Ar So it was you who did that.

Sharky Kesa - 6 years, 7 months ago

Log in to reply

@Sharky Kesa Yes, an' I edited this comment of yours too :P

Krishna Ar - 6 years, 7 months ago

@Sharky Kesa So who was it who did WHAT?!

Satvik Golechha - 6 years, 7 months ago

Log in to reply

@Satvik Golechha Bolded that sentence.

Sharky Kesa - 6 years, 7 months ago

@Krishna Ar They might be added but I still have downvoted comments I do not like.

Agnishom Chattopadhyay - 6 years, 7 months ago

Log in to reply

@Agnishom Chattopadhyay So it was you who did that -_-

Krishna Ar - 6 years, 7 months ago

Log in to reply

@Krishna Ar Yes, I downvoted -1/12 because I can't stand these Kaboobly Doo ideas.

Agnishom Chattopadhyay - 6 years, 7 months ago

Log in to reply

@Agnishom Chattopadhyay But that is actually true. In certain maths... That kind of "weird" calculation is commonly seen in physics.

See this

Julian Poon - 6 years, 7 months ago

Log in to reply

@Julian Poon The issue I have with it, is that it is not made explicit where the calculation is done, which is why we would default to working in the "usual" arithmetic, and say that the sum is infinite.

It is similar to saying " 11 + 2 = 1 " (where the arithmetic is performed on the clock)

It is similar to saying "1 + 1 = 0 ". (Where the arithmetic is performed in the field of order 2)

Neither of these would be "acceptable", and are only technically right by omission. I value clarity of expression much more than showing off.

Calvin Lin Staff - 6 years, 7 months ago

@Agnishom Chattopadhyay What Irony -_- (says master of KD)

Krishna Ar - 6 years, 7 months ago

@Agnishom Chattopadhyay It's not a; kaboobly; idea - there is proof of the outcome. It just seems counter-intuitive because it would seem to equal infinity. However, that is only because you are imagining what happens if you stop it at the 10th terms, 100th term, 1000th term etc.

Curtis Clement - 6 years, 4 months ago

@Sharky Kesa I just trolled your meow...

Satvik Golechha - 6 years, 7 months ago

Log in to reply

EDIT OF SATVIK GOLECHHA'S COMMENT:

@Sharky Kesa I just trolled your (meow)


I just trolled your what?

Sharky Kesa - 6 years, 7 months ago

Log in to reply

@Sharky Kesa Depends.

Satvik Golechha - 6 years, 7 months ago

Log in to reply

@Satvik Golechha And, at the end of your edited comment, why did you say 'meow'?

Read this slowly:

MATHISNOWHERE

What does it say?

Sharky Kesa - 6 years, 7 months ago

Log in to reply

@Sharky Kesa MATH IS NOWHERE OR MATH IS NOW HERE. :D

Anuj Shikarkhane - 6 years, 7 months ago

Log in to reply

@Anuj Shikarkhane Which one do you prefer?

Sharky Kesa - 6 years, 7 months ago

Log in to reply

@Sharky Kesa I prefer "MATH IS NOW HERE"

Anuj Shikarkhane - 6 years, 7 months ago

@Sharky Kesa Depends.

Satvik Golechha - 6 years, 7 months ago

Log in to reply

@Satvik Golechha Which one do you prefer?

Sharky Kesa - 6 years, 7 months ago

Log in to reply

@Sharky Kesa Depends.

Satvik Golechha - 6 years, 7 months ago

Log in to reply

@Satvik Golechha How so?

Sharky Kesa - 6 years, 7 months ago

Log in to reply

@Sharky Kesa That too depends.

Satvik Golechha - 6 years, 7 months ago

Log in to reply

@Satvik Golechha List why it depends.

Sharky Kesa - 6 years, 7 months ago

Log in to reply

@Sharky Kesa It actually doesn't depend. I was just replying "Depends" for fun.

Satvik Golechha - 6 years, 7 months ago

Log in to reply

@Satvik Golechha That is a very good idea,

Agnishom Chattopadhyay - 6 years, 7 months ago

@Satvik Golechha So then, answer my question.

Sharky Kesa - 6 years, 7 months ago

Log in to reply

@Sharky Kesa Which question? You've asked more than one.

Satvik Golechha - 6 years, 7 months ago

Log in to reply

@Satvik Golechha All of them.

Sharky Kesa - 6 years, 7 months ago

@Sharky Kesa I've got to note that one...

Julian Poon - 6 years, 7 months ago

@Sharky Kesa MAT HIS NOW HER E

read like "matt, his now - hurry"

Justin Wong - 6 years, 7 months ago

I neither like it nor dislike it :3

Krishna Ar - 6 years, 7 months ago

Log in to reply

Expected from you. You can still upvote it.

Satvik Golechha - 6 years, 7 months ago

it is...........................

.

.

.

.

.

.

.

.

.

1 = 1

math man - 6 years, 7 months ago

Log in to reply

what is so great in that?@math man

Anuj Shikarkhane - 6 years, 7 months ago

Log in to reply

idk lol

math man - 6 years, 7 months ago

Log in to reply

@Math Man :D

Anuj Shikarkhane - 6 years, 7 months ago

ζ(1)=1+2+3+=112\zeta(-1) = 1+2+3+\dots = -\frac{1}{12}

where ζ(s)\zeta(s) is the Riemann zeta function.

Samuraiwarm Tsunayoshi - 6 years, 7 months ago

Log in to reply

Please state the system of arithmetic in which this statement is true.

Otherwise, it is similar to saying " 1 + 1 is equal to 10 "

\vdots

(where I am working in binary)

Calvin Lin Staff - 6 years, 7 months ago

wait waa?

Julian Poon - 6 years, 7 months ago

The Riemann Zeta function also links with quantum mechanics and is said to encode a 'formula' for the distribution of primes. Whether it does is the million dollar question!

Curtis Clement - 6 years, 6 months ago

Taylor Series -

f(x)=n=f(n)(0)n!xnf(x) = \sum _{ n\quad =\quad }^{ \infty }{ \frac { { f }^{ (n) }(0) }{ n! } { x }^{ n } }

I have one more(if it is allowed):

https://qph.is.quoracdn.net/main-qimg-7beca9cf6c835bdfeabac3541a778973?converttowebp=true

And one more:

http://en.wikipedia.org/wiki/Tupper%27sself-referentialformula

*The last 2 are just for sharing

Kartik Sharma - 6 years, 7 months ago

1+(e^(i*pi))=0

five fundamental numbers in one equation... almost all you guys are already familiar with this

Rohan Asif - 6 years, 7 months ago

Gμv=8πG(Tμv+ρΛgμv){ G }_{ \mu v }=8\pi G\left( { T }_{ \mu v }+{ \rho }_{ \Lambda }{ g}_{ \mu v } \right)

Einstein field equation

shivamani patil - 6 years, 7 months ago

VE+F=2V-E+F=2

Satyam Bhardwaj - 6 years, 7 months ago

Log in to reply

And what is that about?

Hasan Kassim - 6 years, 7 months ago

Euler's formulae

Parth Lohomi - 6 years, 7 months ago

This is not for competition. However this is what I remember since I was of teen age.15220773=11111111.(Eight 1s) It is clear that if we use N73,N=1,2,...9,  we get EIGHT Ns. 152207 is divisible by 11. (11152207)\color{#3D99F6}{152207 * 73= 11111111.(Eight~ '1's)\\~ It~ is ~ clear~ that ~if ~we~use~N*73, N=1,2,...9,~~\\we~ get~ EIGHT~ Ns.~\\152207~is ~divisible ~by ~11. ~(11|152207)}

Niranjan Khanderia - 6 years, 4 months ago

(ii)=0\Im(i^{i})=0

Pranjal Jain - 6 years, 6 months ago

substitute x=pi. then eqution becomes e^(i pi)+1=0. this relation connects 5 most important numbers of mathematics, which makes this most beautiful relation. :)

Thushar Mn - 6 years, 4 months ago

Haha...The abbreviation is Meow :)

Tan Li Xuan - 6 years, 7 months ago

You all have really good entries. I don't know I only have one equation that may seem not as good as yours. Still have a look. e^{i(pi)}= -1 This equation is derived from De Moivre's Theorem(Sorry Sharky Kesa) But I loved it more than the original theorem since it is of the form An irrational number raised to the product of an imaginary and irrational number which gives us a real number. P S I don't know how to write 'pi' in Greek.

Usama Khidir - 6 years, 6 months ago

The sequence 1-1+1-1+1-1... an Oscillatory series equals 1/2 even though all are integers .

Keshav Tiwari - 6 years, 7 months ago

Log in to reply

Interesting! But can you explain why that happens?

Ninad Akolekar - 6 years, 6 months ago

Log in to reply

Refer to this note https://brilliant.org/discussions/thread/interesting-sums/ . Hope it helps ! :)

Keshav Tiwari - 6 years, 6 months ago

Log in to reply

@Keshav Tiwari Thanks!

Ninad Akolekar - 6 years, 6 months ago
×

Problem Loading...

Note Loading...

Set Loading...