Mathmetical induction

Mathematical induction

Note by Shubham Gupta
7 years, 11 months ago

No vote yet
4 votes

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

why in induction problems we assume that f(n) is true and then proceed.....this is only the thing to prove

Shubham Gupta - 7 years, 11 months ago

Log in to reply

I would like to explain the whole principle: First we check for f(1)f(1), if it is true we proceed.Then we assume that it is true for a natural number k.Then we check whether it is true for k+1.If it is also true then our given expression is true for all natural numbers.We assumed that it is true for k then we proceed, but previously we checked that it is true for 1.So in this case k=1.Now we prove that it is true for k+1,so it is true for k=2.So now we proved that it is true for 2.Now ,let k=2 as k=2 satisfies the condition,so we again prove that it is true for k+1 i.e 3.Again we let k=3 and prove for k=4.The cycle goes on and on which shows that expression is true for all natural numbers.Let me know where I am wrong.Yes I accept my weak english.Sorry for it.

Kishan k - 7 years, 11 months ago

Log in to reply

thnks kevin ,and about your english ,its absolutely flawless

Shubham Gupta - 7 years, 11 months ago

You are referring to the First Principle of Finite Induction, which can be proved by contradiction.

Calvin Lin Staff - 7 years, 11 months ago
×

Problem Loading...

Note Loading...

Set Loading...