Maximise it!

For what value of x is the area of pentagon maximum?

#Geometry

Note by Mahdi Raza
1 week, 3 days ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Using the same notations as David, we want to maximize twice the area of the trapezoid ABDEABDE , which is equivalent of maximizing the difference between the area of the triangle ACEACE and the area of the triangle BCD.BCD. Let TT denote this difference.

Since CE=52÷2=26,CE = 52 \div2= 26 , let y=CD,y = CD , then DE=26y.DE = 26 - y .

Because the triangles ACEACE and BCDBCD are similar, then yx=2612+x    y=26xx+12.\dfrac yx = \dfrac{26}{12 + x} \quad \implies\quad y = \dfrac{26x}{x + 12} .

Let θ=BCD,\theta = \measuredangle BCD , then cosθ=x÷26xx+12=x+1226. \cos \theta = x \div \dfrac{26x}{x+12} = \dfrac{x+12}{26} .

T=12(AC)(CE)sinθ12(BC)(CD)sinθ0=12(x+12)26sinθ1226xx+12xsinθ0=262sinθ[(x+12)x2x+12]0=131cos2θ1x+12[(x+12)2x2]0T13=1(x+1226)21x+12(24x+144)0T1324=1(x+1226)21x+12(x+6)0=1(x+1226)21x+12[(x+12)6] \begin{array}{ r c l } T &=& \dfrac 12 (AC)(CE) \sin \theta - \dfrac12 (BC)(CD)\sin\theta \\ \phantom 0 \\ &=& \dfrac12 (x+12) \cdot 26 \sin \theta - \dfrac12 \cdot \dfrac{26x}{x+12} \cdot x \cdot \sin \theta \\ \phantom 0 \\ &=& \dfrac{26}2 \sin \theta \left [ (x+12) - \dfrac{x^2}{x+12} \right ] \\ \phantom 0 \\ &=& 13 \sqrt{1 - \cos^2 \theta} \cdot \dfrac1{x+12} \cdot [ (x+12)^2 - x^2] \\ \phantom 0 \\ \dfrac T{13} &=& \sqrt{1 - \left( \dfrac{x+12}{26} \right)^2 } \cdot \dfrac1{x+12} \cdot (24x + 144) \\ \phantom 0 \\ \dfrac T{13 \cdot 24} &=& \sqrt{1 - \left( \dfrac{x+12}{26} \right)^2 } \cdot \dfrac1{x+12} \cdot (x+ 6) \\ \phantom 0 \\ &=& \sqrt{1 - \left( \dfrac{x+12}{26} \right)^2 } \cdot \dfrac1{x+12} \cdot [ (x+12) - 6 ] \end{array}

For simplicity sake, let y=x+12y = x + 12 ,

Equivalently, we want to maximize the expression

(T1324)2=[1(y26)2]1y2(y6)2 \left( \dfrac T{13\cdot 24} \right)^2 = \left[ 1 - \left(\dfrac y{26}\right)^2 \right ] \cdot \dfrac1{y^2} \cdot (y - 6)^2

Multiplying both sides by 262,26^2 , the expression we want to maximize is

f(y):=262y2y2(y6)2=(262y21)(y6)2 f(y) := \dfrac{26^2 - y^2}{y^2} (y - 6)^2 = \left(\dfrac{26^2}{y^2} - 1 \right) (y -6)^2

A simple chain rule shows that f(y)=2(y6)(y34056)y2. f'(y) = -\dfrac{2(y-6)(y^3 - 4056)}{y^2} .

At the critical point, f(y)=0    y=6,40561/3.f'(y) = 0 \implies y = 6, 4056^{1/3} . But f(6)<f(40561/3), f(6) < f \left( 4056^{1/3} \right) , so the expression is maximized at y=40561/3.y = 4056^{1/3} .

Equivalently, the area on the pentagon is maximized when x=y12=4056312.x = y - 12 =\boxed{ \sqrt[3]{4056} - 12 } .

Pi Han Goh - 1 week, 3 days ago

Label the diagram as follows, and let θ=ECA\theta = \angle ECA:

By symmetry, EC=1252=26EC = \frac{1}{2} \cdot 52 = 26 and AB=1224=12AB = \frac{1}{2} \cdot 24 = 12.

From ACE\triangle ACE, AC=26cosθ=x+12AC = 26 \cos \theta = x + 12, so x=26cosθ12=BCx = 26 \cos \theta - 12 = BC.

Since ACEBCD\triangle ACE \sim \triangle BCD by AA similarity, CD=ECBCAC=26cosθ12cosθCD = \cfrac{EC \cdot BC}{AC} = \cfrac{26 \cos \theta - 12}{\cos \theta}.

The area of the pentagon ApentA_{\text{pent}} is then:

=2AABDE= 2 \cdot A_{ABDE}

=2(AACEABCD)= 2(A_{\triangle ACE} - A_{\triangle BCD})

=2(12ACCEsinθ12BCCDsinθ)= 2(\frac{1}{2} \cdot AC \cdot CE \cdot \sin \theta - \frac{1}{2} \cdot BC \cdot CD \cdot \sin \theta)

=2(1226cosθ26sinθ12(26cosθ12)26cosθ12cosθsinθ)= 2(\frac{1}{2} \cdot 26 \cos \theta \cdot 26 \cdot \sin \theta - \frac{1}{2} \cdot (26 \cos \theta - 12) \cdot \cfrac{26 \cos \theta - 12}{\cos \theta} \cdot \sin \theta)

=262cos2θtanθ(26cosθ12)2tanθ= 26^2 \cos^2 \theta \tan \theta - (26 \cos \theta - 12)^2 \tan \theta

=(624cosθ144)tanθ= (624 \cos \theta - 144) \tan \theta

=48(13cosθ3)tanθ= 48(13 \cos \theta - 3) \tan \theta

=48(13sinθ3tanθ)= 48(13 \sin \theta - 3 \tan \theta)

And its derivative dApentdθ\cfrac{dA_{\text{pent}}}{d\theta} is then:

=48(13cosθ3sec2θ)= 48(13 \cos \theta - 3 \sec^2 \theta)

=48(13cos3θsec2θ3sec2θ)= 48(13 \cos^3 \theta \sec^2 \theta - 3 \sec^2 \theta)

=48sec2θ(13cos3θ3)= 48 \sec^2 \theta (13 \cos^3 \theta - 3)

The maximum area occurs when dApentdθ=48sec2θ(13cos3θ3)=0\cfrac{dA_{\text{pent}}}{d\theta} = 48 \sec^2 \theta (13 \cos^3 \theta - 3) = 0, which is when cosθ=3133\cos \theta = \sqrt[3]{\cfrac{3}{13}}.

That makes the value of xx for which the area of pentagon is a maximum x=26cosθ12=26313312=25073123.948x = 26 \cos \theta - 12 = 26 \sqrt[3]{\cfrac{3}{13}} - 12 = 2 \sqrt[3]{507} - 12 \approx \boxed{3.948}.

David Vreken - 1 week, 3 days ago

Log in to reply

Another maximization solution is based on taking the derivate of the area with respect to x. And it gives the same result

Mahdi Raza - 1 week, 3 days ago

Log in to reply

I solved it that way the first time I tried it, but I thought the math was less messy when I tried it again using θ\theta.

David Vreken - 1 week, 3 days ago
×

Problem Loading...

Note Loading...

Set Loading...