I'm curious... Is it true, and, if so, is it straightforward to show that the maximum area triangle that can squeeze between these circles is equilateral?
This discussion board is a place to discuss our Daily Challenges and the math and science
related to those challenges. Explanations are more than just a solution — they should
explain the steps and thinking strategies that you used to obtain the solution. Comments
should further the discussion of math and science.
When posting on Brilliant:
Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.
Markdown
Appears as
*italics* or _italics_
italics
**bold** or __bold__
bold
- bulleted - list
bulleted
list
1. numbered 2. list
numbered
list
Note: you must add a full line of space before and after lists for them to show up correctly
It can't have curved sides... I am talking about squeezing a triangle (which has straight sides) in that little space in the middle (which has curved sides).
You can model this on a co-ordinate grid, circles of radius 1 centered at (0,-1) and (+-1, 3−1). I couldn't really get anywhere, though. Probably a geometric solution is optimal, but I've never been good at those.
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
Actual Yes
Log in to reply
Sounds good... Do you know how to show it?
Log in to reply
Yes The area of all 4 circles are equal to the area of the 4 triangles
How a triangle can have curved sides
Log in to reply
It can't have curved sides... I am talking about squeezing a triangle (which has straight sides) in that little space in the middle (which has curved sides).
Actually yes you are right. I misunderstood the question
how i can,understand noah
You can model this on a co-ordinate grid, circles of radius 1 centered at (0,-1) and (+-1, 3−1). I couldn't really get anywhere, though. Probably a geometric solution is optimal, but I've never been good at those.