Prove the following Integral:
∫01ln(x)Li4(x)1−xdx=ζ(3)2−2512ζ(6)\displaystyle \int\limits_{0}^{1} \dfrac{\ln (x) \operatorname{Li}_{4}(x)}{1-x} \mathrm{d} x = \zeta(3)^2 -\frac{25}{12}\zeta(6)0∫11−xln(x)Li4(x)dx=ζ(3)2−1225ζ(6)
This is a part of the set Formidable Series and Integrals.
Note by Aman Rajput 5 years, 4 months ago
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
_italics_
**bold**
__bold__
- bulleted- list
1. numbered2. list
paragraph 1paragraph 2
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
This is a quote
# I indented these lines # 4 spaces, and now they show # up as a code block. print "hello world"
\(
\)
\[
\]
2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
A=∫01ln(x)Li4(x)1−xdx\displaystyle A=\int _{ 0 }^{ 1 }{ \frac { \ln { \left( x \right) { Li }_{ 4 }\left( x \right) } }{ 1-x } dx } A=∫011−xln(x)Li4(x)dx
A=∑k=1∞1k4∫01ln(x)xk1−xdx\displaystyle A=\sum _{ k=1 }^{ \infty }{ \frac { 1 }{ { k }^{ 4 } } \int _{ 0 }^{ 1 }{ \frac { \ln { \left( x \right) { x }^{ k } } }{ 1-x } dx } } A=k=1∑∞k41∫011−xln(x)xkdx
Now, this is nothing but an integral representation of polygamma function.
A=−∑k=1∞1k4ψ1(k+1)\displaystyle A=-\sum _{ k=1 }^{ \infty }{ \frac { 1 }{ { k }^{ 4 } } { \psi }_{ 1 } } \left( k+1 \right) A=−k=1∑∞k41ψ1(k+1)
Now we use the relation: ψa(b)=(−1)a+1a!∑n=0∞1(n+b)a+1\displaystyle { \psi }_{ a }\left( b \right) ={ \left( -1 \right) }^{ a+1 }a!\sum _{ n=0 }^{ \infty }{ \frac { 1 }{ { \left( n+b \right) }^{ a+1 } } } ψa(b)=(−1)a+1a!n=0∑∞(n+b)a+11
Therefore, we get:
A=−∑k=1∞∑n=0∞1k4(k+n)2\displaystyle A=-\sum _{ k=1 }^{ \infty }{ \sum _{ n=0 }^{ \infty }{ \frac { 1 }{ { k }^{ 4 }{ \left( k+n \right) }^{ 2 } } } } A=−k=1∑∞n=0∑∞k4(k+n)21
Now, A=−T(4,0,2)A=-T\left( 4,0,2 \right) A=−T(4,0,2)
Here, T=(a,b,c)T=\left( a,b,c \right)T=(a,b,c) is Tornheim sum.
This can also be written as:
A=∑r1>r21r12r24\displaystyle A=\sum _{ { r }_{ 1 }>{ r }_{ 2 } }^{ }{ \frac { 1 }{ { { r }_{ 1 } }^{ 2 }{ { r }_{ 2 } }^{ 4 } } } A=r1>r2∑r12r241
A=ζ(2,4)A=\zeta \left( 2,4 \right) A=ζ(2,4)
Where ζ(a,b)\zeta \left( a,b \right)ζ(a,b) is multi-zeta function and not Hurwitz-zeta function.
Now Tornheim sum can be evaluated as:
T(m,0,n)=(−1)m∑j=0⌊n−12⌋(m+n−2j−1m−1)ζ(2j)ζ(m+n−2j)+(−1)m∑j=0⌊m2⌋(m+n−2j−1n−1)ζ(2j)ζ(m+n−2j)−12ζ(m,n)\displaystyle T\left( m,0,n \right) ={ \left( -1 \right) }^{ m }\sum _{ j=0 }^{ \left\lfloor \frac { n-1 }{ 2 } \right\rfloor }{ \left( \begin{matrix} m+n-2j-1 \\ m-1 \end{matrix} \right) \zeta \left( 2j \right) \zeta \left( m+n-2j \right) + } { \left( -1 \right) }^{ m }\sum _{ j=0 }^{ \left\lfloor \frac { m }{ 2 } \right\rfloor }{ \left( \begin{matrix} m+n-2j-1 \\ n-1 \end{matrix} \right) \zeta \left( 2j \right) \zeta \left( m+n-2j \right) -\frac { 1 }{ 2 } \zeta \left( m,n \right) } T(m,0,n)=(−1)mj=0∑⌊2n−1⌋(m+n−2j−1m−1)ζ(2j)ζ(m+n−2j)+(−1)mj=0∑⌊2m⌋(m+n−2j−1n−1)ζ(2j)ζ(m+n−2j)−21ζ(m,n)
Now taking m=4m=4m=4 and n=2n=2n=2, we get:
A=(ζ(3))2−2512ζ(6)A={ \left( \zeta \left( 3 \right) \right) }^{ 2 }-\frac { 25 }{ 12 } \zeta \left( 6 \right) A=(ζ(3))2−1225ζ(6)
∴∫01ln(x)Li4(x)1−xdx=(ζ(3))2−2512ζ(6)\boxed {\displaystyle \therefore \int _{ 0 }^{ 1 }{ \frac { \ln { \left( x \right) { Li }_{ 4 }\left( x \right) } }{ 1-x } dx } ={ \left( \zeta \left( 3 \right) \right) }^{ 2 }-\frac { 25 }{ 12 } \zeta \left( 6 \right) } ∴∫011−xln(x)Li4(x)dx=(ζ(3))2−1225ζ(6)
Log in to reply
Thanks Aman for introducing me to Tornheim sum.
Good aditya... Why you are going for polygamma here... If you want to use tornheim sum.. Directly apply this
11−x=∑n>0xn−1\displaystyle \frac{1}{1-x}=\sum_{n>0}x^{n-1}1−x1=n>0∑xn−1
And in last formula.. At the end there is a term ζ(m,n)\zeta(m,n)ζ(m,n) which will become ζ(4,2)\zeta(4,2)ζ(4,2) . now how will you evaluate this value to get T(4,0,2)T(4,0,2)T(4,0,2) . But you are trying to find ζ(2,4)\zeta(2,4)ζ(2,4)
Ahahahaha. I'm a fool. Since this problem involves challenging ideas I went through polygamma.
@Aditya Kumar – I have edited it .. Check again
And I think the last formula you are using.. Will not gonna work.. Check it again . I don't how you get this from that ??? This formula is valid for m+nm+nm+n odd.
Here , 4+2 =6 (even) Formula not valid @Aditya Kumar
Can u provide a formula to evaluate it?
Aliter:
−A=∑m=1∞∑n=0∞1(m+n)2n4-\text{A} = \displaystyle \sum_{m=1}^{\infty}\sum_{n=0}^{\infty} \dfrac{1}{(m+n)^2 n^4}−A=m=1∑∞n=0∑∞(m+n)2n41
=ζ(6)+∑m=1∞∑n=1∞1(m+n)2n4 \displaystyle = \zeta(6) + \sum_{m=1}^{\infty}\sum_{n=1}^{\infty} \dfrac{1}{(m+n)^2n^4}=ζ(6)+m=1∑∞n=1∑∞(m+n)2n41
=ζ(6)+12(∑m=1∞∑n=1∞1(m+n)2n4+∑m=1∞∑n=1∞1(m+n)2m4) \displaystyle = \zeta(6) + \dfrac{1}{2} \left( \sum_{m=1}^{\infty}\sum_{n=1}^{\infty} \dfrac{1}{(m+n)^2n^4} + \sum_{m=1}^{\infty}\sum_{n=1}^{\infty} \dfrac{1}{(m+n)^2m^4}\right) =ζ(6)+21(m=1∑∞n=1∑∞(m+n)2n41+m=1∑∞n=1∑∞(m+n)2m41) (Interchanging variables and averaging)
=ζ(6)+12(∑m=1∞∑n=1∞m4+n4(m+n)2m4n4) \displaystyle = \zeta(6) + \dfrac{1}{2} \left(\sum_{m=1}^{\infty}\sum_{n=1}^{\infty} \dfrac{m^4+n^4}{(m+n)^2 m^4 n^4}\right)=ζ(6)+21(m=1∑∞n=1∑∞(m+n)2m4n4m4+n4)
=ζ(6)+12∑m=1∞∑n=1∞[1m2n4+1n2m4−2m3n3+2m2n2(m+n)]\displaystyle = \zeta(6) + \dfrac{1}{2} \sum_{m=1}^{\infty}\sum_{n=1}^{\infty} \left[\dfrac{1}{m^2 n^4} + \dfrac{1}{n^2 m^4} -\dfrac{2}{m^3n^3} + \dfrac{2}{m^2 n^2 (m+n)} \right] =ζ(6)+21m=1∑∞n=1∑∞[m2n41+n2m41−m3n32+m2n2(m+n)2] (Expressing m4+n4m^4+n^4m4+n4 as powers of (m+n)(m+n)(m+n) and mnmnmn )
=ζ(6)+ζ(2)ζ(4)−[ζ(3)]2+S=\displaystyle \zeta(6) + \zeta(2)\zeta(4) - \left[\zeta(3)\right]^2 + \text{S} =ζ(6)+ζ(2)ζ(4)−[ζ(3)]2+S
where S=∑m=1∞∑n=1∞1m2n2(m+n)2\displaystyle \text{S} = \sum_{m=1}^{\infty}\sum_{n=1}^{\infty} \dfrac{1}{m^2 n^2 (m+n)^2}S=m=1∑∞n=1∑∞m2n2(m+n)21
Since S=ζ(6)3\text{S} = \dfrac{\zeta(6)}{3}S=3ζ(6), we have,
−A=43ζ(6)+ζ(2)ζ(4)−[ζ(3)]2-\text{A} = \dfrac{4}{3} \zeta(6) + \zeta(2)\zeta(4) - \left[\zeta(3)\right]^2−A=34ζ(6)+ζ(2)ζ(4)−[ζ(3)]2
Expressing ζ(2)ζ(4)\zeta(2)\zeta(4)ζ(2)ζ(4) in terms of ζ(6)\zeta(6)ζ(6), we have,
A=[ζ(3)]2−2512ζ(6)\text{A} = \boxed{\left[\zeta(3)\right]^2 - \dfrac{25}{12} \zeta(6)} A=[ζ(3)]2−1225ζ(6)
Problem Loading...
Note Loading...
Set Loading...
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
A=∫011−xln(x)Li4(x)dx
A=k=1∑∞k41∫011−xln(x)xkdx
Now, this is nothing but an integral representation of polygamma function.
A=−k=1∑∞k41ψ1(k+1)
Now we use the relation: ψa(b)=(−1)a+1a!n=0∑∞(n+b)a+11
Therefore, we get:
A=−k=1∑∞n=0∑∞k4(k+n)21
Now, A=−T(4,0,2)
Here, T=(a,b,c) is Tornheim sum.
This can also be written as:
A=r1>r2∑r12r241
A=ζ(2,4)
Where ζ(a,b) is multi-zeta function and not Hurwitz-zeta function.
Now Tornheim sum can be evaluated as:
T(m,0,n)=(−1)mj=0∑⌊2n−1⌋(m+n−2j−1m−1)ζ(2j)ζ(m+n−2j)+(−1)mj=0∑⌊2m⌋(m+n−2j−1n−1)ζ(2j)ζ(m+n−2j)−21ζ(m,n)
Now taking m=4 and n=2, we get:
A=(ζ(3))2−1225ζ(6)
∴∫011−xln(x)Li4(x)dx=(ζ(3))2−1225ζ(6)
Log in to reply
Thanks Aman for introducing me to Tornheim sum.
Good aditya... Why you are going for polygamma here... If you want to use tornheim sum.. Directly apply this
1−x1=n>0∑xn−1
And in last formula.. At the end there is a term ζ(m,n) which will become ζ(4,2) . now how will you evaluate this value to get T(4,0,2) . But you are trying to find ζ(2,4)
Log in to reply
Ahahahaha. I'm a fool. Since this problem involves challenging ideas I went through polygamma.
Log in to reply
And I think the last formula you are using.. Will not gonna work.. Check it again . I don't how you get this from that ??? This formula is valid for m+n odd.
Here , 4+2 =6 (even) Formula not valid @Aditya Kumar
Log in to reply
Can u provide a formula to evaluate it?
Aliter:
−A=m=1∑∞n=0∑∞(m+n)2n41
=ζ(6)+m=1∑∞n=1∑∞(m+n)2n41
=ζ(6)+21(m=1∑∞n=1∑∞(m+n)2n41+m=1∑∞n=1∑∞(m+n)2m41) (Interchanging variables and averaging)
=ζ(6)+21(m=1∑∞n=1∑∞(m+n)2m4n4m4+n4)
=ζ(6)+21m=1∑∞n=1∑∞[m2n41+n2m41−m3n32+m2n2(m+n)2] (Expressing m4+n4 as powers of (m+n) and mn )
=ζ(6)+ζ(2)ζ(4)−[ζ(3)]2+S
where S=m=1∑∞n=1∑∞m2n2(m+n)21
Since S=3ζ(6), we have,
−A=34ζ(6)+ζ(2)ζ(4)−[ζ(3)]2
Expressing ζ(2)ζ(4) in terms of ζ(6), we have,
A=[ζ(3)]2−1225ζ(6)