More generalized derangement formula?

Hi, I'm curious...

Does anyone know a more general formula for derangements for groups that contain two or more indistinguishable elements?

For example, how many ways you could rearrange the letters in FOOLISH so that no letter ends up in the same spot?

i.e. In the new arrangement, the letter "O" can't appear in the second or third positions.

#Combinatorics

Note by Geoff Pilling
5 years, 1 month ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

You can label the similar letters as 1,2...., Now treat them as different letters .Now you can dearrange taking all the letters as different. As in this example FOOLISH YOU LABEL AS O1 AND O2 ANND NOW DERRANGE AS 7 DIFFERENT LETTERS . SUBTRACT CASES IN WHICH POSITION OF O1 AND O2 ARE INTERCHANGED AND OTHERS ARE DEARRANGED(AS REALLY O1AND O2 ARE INDISTINGUISHABLE).

EXTENDING THIS THOUGHT I FOUNDED A FORMULLA

DEARRANGEMENTS CONSIDERING ALL DIFFERENT - ( derangements of same letters considering them different*no of dearrangements of remaining letters)

Please tell whether my thought is correct or not.

AYUSH JAIN - 5 years ago

Log in to reply

Thanks for your input Ayush! I'll need to think about it... For example, can you think of a generalized formula, for example, for GOOFING, where you have 2 pairs of identical letters, G and O?

Geoff Pilling - 5 years ago

Log in to reply

First dearrange all the seven letters treating them different. While you do so you have to delete these cases,

Case1 when position of one of two different types of letters get rearranged say G . No of cases in which two G interchanged = dearrangement of remaining five letters. Case 2 position of O is interchanged No of such cases =derangement of remaining 5 letters.

Here no of cases in which both O and G interchanged position is counted twice . so should be deleted once = dearrangement of non common letters is 3

Extending this thought it can be formulates Let total no of letters be n, no of same letters of A type n(A) ........

No of dearrangements =derangements of n - No of cases deleted= n(A U B U C....) HERE IT IS N(AUB) = N(A) U N(B)-N(AΠB) PLEASE REPLY

AYUSH JAIN - 5 years ago

Log in to reply

@Ayush Jain Interesting... Nice suggestion, Ayush! I'll need to think about this for a bit!

Geoff Pilling - 5 years ago

Log in to reply

@Geoff Pilling After giving a rethought I found several loop holes in the formula I formulated . IF we increase this question to three types ,then this formula would be inappropriate.

But going by basic approach we can solve these type of question.

AYUSH JAIN - 5 years ago

I would be interested about this too. I'm guessing that someone has calculated this value.

Calvin Lin Staff - 5 years, 1 month ago

Log in to reply

I did put together a problem for a specific case, "FOOLING" here but it would be great to see a more general solution! The one I have doesn't seem all that elegant. :/

Geoff Pilling - 5 years, 1 month ago

This should be helpful.

Prasun Biswas - 4 years, 8 months ago
×

Problem Loading...

Note Loading...

Set Loading...