This discussion board is a place to discuss our Daily Challenges and the math and science
related to those challenges. Explanations are more than just a solution — they should
explain the steps and thinking strategies that you used to obtain the solution. Comments
should further the discussion of math and science.
When posting on Brilliant:
Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.
Markdown
Appears as
*italics* or _italics_
italics
**bold** or __bold__
bold
- bulleted - list
bulleted
list
1. numbered 2. list
numbered
list
Note: you must add a full line of space before and after lists for them to show up correctly
i can't talk to much, but you are give us a great problem every weeks ,i never got this lesson on my school, thank you sir, im agree with Siddharth , that amazing solution :)
we can have F=ma only when we azzume that mass is constant but for every partical mass can't be constant as newtons first law say that
F = d/dt(mv) the on differnsiate it we get
F = (m)(d/dt(v))+(v)(d/dt(m))
so it says that if your mass is constant than d/dt(m)=0 and you will get F=ma
but if it is not constant than you will get the above equation which is the foundation of
einstian most famous equation E = m(c^2)
About your F=mv case, can you elaborate on how it doesnt hold up to relativity? If F=mv and we at the same time insist that there is a universal "at rest", that means that we can introduce fictive forces to moving reference frames, much the same way we do in the current Newtonian model for accelerating reference frames. I am not physicist enough to be able to find problematic conclusions with this approach. Conclusions that do not match well with experiments and empirical evidence, yes, but not intrinsically problematic conclusions.
Why move to relativity for n=1? Let us take F=mv, v is velocity. Let us also take F as the external force on the particle. Now, if F=0, it must mean that v=0. However, if only this were true, we would have to modify Newton's first law to only "An object at rest continues to remain at rest". But then what about the case of uniform velocity? Our new law will imply that in case an object travels with uniform velocity, it will have some constant force acting on it, which I think is wrong, since it is experimentally verified that objects travelling with uniform velocity must have zero external force acting on them (Take as an approximate example, a linear air track).
1 time derivation of position is velocity.it tells you with respect to time how rapidly are u scanging the dispalcement. the derivative of velocity with respect to time is called as acceleration.it tells me how rapidly i am changing my velocity. so first derivative will give you velocity and then derivative again of velocity is acceleration.thus there are two time derivatives involved.first will make position as velocity and second will make it as acceleration. infact even third derivative also exists,its called as jerk.......
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
excellent solution. Hats off!
i can't talk to much, but you are give us a great problem every weeks ,i never got this lesson on my school, thank you sir, im agree with Siddharth , that amazing solution :)
we can have F=ma only when we azzume that mass is constant but for every partical mass can't be constant as newtons first law say that F = d/dt(mv) the on differnsiate it we get F = (m)(d/dt(v))+(v)(d/dt(m)) so it says that if your mass is constant than d/dt(m)=0 and you will get F=ma but if it is not constant than you will get the above equation which is the foundation of einstian most famous equation E = m(c^2)
can we move the n relative to an infinite number????
About your F=mv case, can you elaborate on how it doesnt hold up to relativity? If F=mv and we at the same time insist that there is a universal "at rest", that means that we can introduce fictive forces to moving reference frames, much the same way we do in the current Newtonian model for accelerating reference frames. I am not physicist enough to be able to find problematic conclusions with this approach. Conclusions that do not match well with experiments and empirical evidence, yes, but not intrinsically problematic conclusions.
Log in to reply
But you can't specify a universal at rest and maintain relativity.
Why move to relativity for n=1? Let us take F=mv, v is velocity. Let us also take F as the external force on the particle. Now, if F=0, it must mean that v=0. However, if only this were true, we would have to modify Newton's first law to only "An object at rest continues to remain at rest". But then what about the case of uniform velocity? Our new law will imply that in case an object travels with uniform velocity, it will have some constant force acting on it, which I think is wrong, since it is experimentally verified that objects travelling with uniform velocity must have zero external force acting on them (Take as an approximate example, a linear air track).
Log in to reply
F=0 it isn't have to be that v=0. And, m times v is a momentum not a force.
1 time derivation of position is velocity.it tells you with respect to time how rapidly are u scanging the dispalcement. the derivative of velocity with respect to time is called as acceleration.it tells me how rapidly i am changing my velocity. so first derivative will give you velocity and then derivative again of velocity is acceleration.thus there are two time derivatives involved.first will make position as velocity and second will make it as acceleration. infact even third derivative also exists,its called as jerk.......