Need derviation of some formulas! Help!

1. Euler's Formula - cosx+isinx=eixcos x + isin x = {e}^{ix}

2. Relation between Mean, Mode, Median - Mode=3Median2MeanMode = 3*Median - 2*Mean

3. Poisson's Distribution - P(X=r)=eλ.λrr!P(X=r) = {e}^{-\lambda}.\frac{{\lambda}^{r}}{r!} where λ(mean)=np(n=No.oftrials,p=probabilityofsuccess)\lambda(mean) = np(n = No. of trials, p = probability of success)

4. RMS - Arithmetico-Geometric and Harmonic Mean inequality

5. Cauchy-Shwartz's inequality

6. Sum of sines with angles in AP- sinα+sin(α+β)+......sin(α+(n1)β)=sinnβ2sinβ2.sin(α+(n1)β2)sin\alpha + sin(\alpha + \beta) + ...... sin(\alpha + (n-1)\beta) = \frac{sin\frac{n\beta}{2}}{sin\frac{\beta}{2}}. sin(\alpha + (n-1)\frac{\beta}{2})

and similarly

Sum of cosines with angles in AP - which gives sinnβ2sinβ2.cos(α+(n1)β2)\frac{sin\frac{n\beta}{2}}{sin\frac{\beta}{2}}. cos(\alpha + (n-1)\frac{\beta}{2})

THANKS a lot in anticipation! And I believe that you have the answers and you must also be in need of some of the formulas. You are free to share them here to clear all your doubts. :)

Note by Kartik Sharma
6 years, 7 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

To prove (i)(i) we have z=cos(x)+isin(x)z=cos(x)+isin(x) where zz is a function of xx

Differentiating zz with respect to xx we get :

dzdx=sin(x)+icos(x)\frac{dz}{dx}=-sin(x)+icos(x)

Since i2=1{i}^{2}=-1 hence we have :

dzdx=i2sin(x)+icos(x)=i(cos(x)+isin(x))\frac{dz}{dx}={i}^{2}sin(x)+icos(x)=i(cos(x)+isin(x))

Since cos(x)+isin(x)=zcos(x)+isin(x)=z hence we have :

dzdx=iz\frac{dz}{dx}=iz

Seperating variables and integrating both sides we have :

dzz=idx \int { \frac { dz }{ z } } =\int { idx }

ln(z)=ix+Cln(z)=ix+C

When x=0,z=1x=0,z=1 hence we get C=0C=0

ln(z)=ix\Rightarrow ln(z)=ix

z=eix\Rightarrow z={e}^{ix}

Finally :

cos(x)+isin(x)=eixcos(x)+isin(x)=e^{ix}

Ronak Agarwal - 6 years, 7 months ago

Log in to reply

Wow! Amazing! This made me become your fan! Thank You! Try other proofs too! And yes can you give me an explanation on why Taylor series makes sense?

Kartik Sharma - 6 years, 7 months ago

Seriously is my proof that much bad, I wonder about the reason for 4 downvotes.

Sorry if you didn't like the proof.

Ronak Agarwal - 6 years, 7 months ago

Log in to reply

I think when x=0 , then at the same time z cannot be equal to one.

sneha sharma - 6 years, 6 months ago

I Love Your way To prove This equation ! Hats Off!! I 'am Amazed How Can any person down-votes it ??

Deepanshu Gupta - 6 years, 7 months ago

To prove 11 Euler's Formula, simple use the expansion of exe^x , i.e. ex=1+x+x22!+x33!+x44!+x55!+.....e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\frac{x^4}{4!}+\frac{x^5}{5!}+.....

    eix=1+x.i+x2.i22!+x3.i33!+x4.i44!+x5.i55!+.....\implies e^{ix}=1+x.i+\frac{x^2.i^2}{2!}+\frac{x^3.i^3}{3!}+\frac{x^4.i^4}{4!}+\frac{x^5.i^5}{5!}+.....

=1+x.ix22!i.x33!+x44!+i.x55!+........ \quad \quad \quad \quad =1+x.i-\frac{x^2}{2!}-i.\frac{x^3}{3!}+\frac{x^4}{4!}+i.\frac{x^5}{5!}+........

=(1x22!+x44!x66!+.....)+i.(xx33!+x55!x77!+......) \quad \quad \quad \quad =(1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+.....)+i.(x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+......)

=cosx+i.sinx\quad \quad \quad \quad =cosx +i.sinx

Because we know that cosx=1x22!+x44!x66!+.....cosx=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+..... sinx=xx33!+x55!x77!+......sinx=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+......

Hence proved that cosx+isinx=eix\boxed{cosx+isinx=e^{ix}}

Sandeep Bhardwaj - 6 years, 7 months ago

Log in to reply

Can you tell me why does Taylor series make sense? How to find them? *if you don't mind

Kartik Sharma - 6 years, 7 months ago

5) and 6) are simple, i don't know about rest

[i=1naibi]2[i=1nai2]2[i=1nbi2]2 [\sum_{i = 1}^{n} a_{i}b_{i}]^{2} \leq [\sum_{i = 1}^{n} a_{i}^{2}]^{2}[\sum_{i = 1}^{n} b_{i}^{2}]^{2}

and the equality holds if a1b1=a2b2=.....=anbn \frac{a_{1}}{b_{1}} = \frac{a_{2}}{b_{2}} = .....=\frac{a_{n}}{b_{n}}

LetA=[i=1nai2]2,B=[i=1nbi2]2,C=[i=1naibi]2 A = [\sum_{i = 1}^{n} a_{i}^{2}]^{2} , B =[\sum_{i = 1}^{n} b_{i}^{2}]^{2} , C = [\sum_{i = 1}^{n} a_{i}b_{i}]^{2}

then C2AB C^{2} \leq AB

If B = 0 then bi=0b_{i} = 0 for i = 1 , 2, . , n .Hence C = 0 and is true .Therefore it is sufficient to consider the case B0 B\neq 0 This implies B > 0 .

0i=1n(BaiCbi)2=i=1n(B2ai22BCaibi+C2bi2 0 \leq \sum_{i = 1}^{n} (Ba_{i} - Cb_{i})^{2} = \sum_{i = 1}^{n} ( B^{2}a_{i}^{2} - 2BCa_{i}b_{i} + C^{2}b_{i}^{2}

distributing the sum,

=B(ABC2) = B(AB - C^{2})

Sinc eB> 0 we get ABC2>0 AB - C^{2} > 0 which is the inequality C2ABC^{2} \leq AB. Moreover , equality holds if i=1n(BaiCbi)2=0\sum_{i = 1}^{n} (Ba_{i} - Cb_{i})^{2} = 0

This is equivalent to

aibi=CB \frac{a_{i}}{b_{i}} = \frac{C}{B} for i = 1 , 2 , .... , n

Simple application and beautiful application

If a, b , c and d are positive real numbers such that c2+d2=(a2+b2)3c^{2} + d^{2} = (a^{2} + b^{2})^{3},

prove that a3c+b3d \frac{a^{3}}{c} + \frac{b^{3}}{d} if ad = bc .

Using above inequality we get ,

(a2+b2)2=(a3cac+b3dbd)2(a^{2} + b^{2})^{2} = (\sqrt{\frac{a^{3}}{c}}\sqrt{ac} + \sqrt{\frac{b^{3}}{d}}\sqrt{bd} )^{2}

(a3c+b3d)(ac+bd) \leq ( \frac{a^{3}}{c} + \frac{b^{3}}{d})(ac + bd) , where the equality holds

Thus (a3c+b3d)(ac+bd)(a2+b2)3 \leq ( \frac{a^{3}}{c} + \frac{b^{3}}{d})(ac + bd) \geq ( a^{2} + b^{2})^{3}

=(a2+b2)1/2(a2+b2)3/2 = ( a^{2} + b^{2})^{1/2} ( a^{2} + b^{2})^{3/2}

=(a2+b2)1/2(c2+d2)1/2ac+bd = ( a^{2} + b^{2})^{1/2}( c^{2} + d^{2})^{1/2} \geq ac + bd

again using the inequality , the equality holds in the last step ( above) if ac=bd \frac{a}{c} = \frac{b}{d}

Combining both we get a3c+b3d1\frac{a^{3}}{c} + \frac{b^{3}}{d} \geq 1 and the equality holds if ad = bc.

6) One of my favorite

let s be equal to the given series , α=a,β=b \alpha =a , \beta = b

2Xsin(b/2)=2sinasin(b/2)+2sin(a+b)sin(b/2)............ 2Xsin(b/2) = 2sinasin(b/2) + 2sin(a + b)sin(b/2) ............

=cos(ab/2)cos(a+b/2)+cos(a+b/2)cos(a+3b/2)....+cos[(a+(n3/2)b)]cos[a+(n1/2)b] = cos( a - b/2) - cos( a + b/2) + cos(a + b/2) - cos( a + 3b/2) .... + cos[(a + (n - 3/2)b)] - cos[a + (n - 1/2)b]

=cos(ab/2)cos(a+(n1/2)b] = cos(a - b/2) - cos(a + (n - 1/2)b]

=2sin[a+((n1)/2)b]sin(nb/2) = 2sin[a +((n-1)/2)b]sin(nb/2)

X=sin[a+n12b]sinnb2sinb2 X = \huge{\boxed{\frac{sin[a + \frac{n - 1}{2}b]sin\frac{nb}{2}}{sin\frac{b}{2}}}}

Similarly for the cosine series it can be done , try it ,its interesting and enjoyable.

Lovely Application of this can be found in THIS QUESTION

Enjoy@Kartik Sharma

U Z - 6 years, 7 months ago

Log in to reply

Nice Thanks! I solved that problem! Maybe I would give my solution too!

Kartik Sharma - 6 years, 7 months ago

I am giving proof of 6th6th formula : S(let)=sinα+sin(α+β)+......sin(α+(n1)β)=sinnβ2sinβ2.sin(α+(n1)β2)S(let)=sin\alpha + sin(\alpha + \beta) + ...... sin(\alpha + (n-1)\beta) = \frac{sin\frac{n\beta}{2}}{sin\frac{\beta}{2}}. sin(\alpha + (n-1)\frac{\beta}{2})

We know that 2.sinA.sinB=cos(AB)cos(A+B)\boxed{2.sinA.sinB=cos(A-B)-cos(A+B)}     2.sinα.sinβ2=cos(αβ2)cos(α+β2)\implies 2.sin\alpha.sin\frac{\beta}{2}=cos(\alpha-\frac{\beta}{2})-cos(\alpha+\frac{\beta}{2})

    2.sin(α+β).sinβ2=cos(α+β2)cos(α+3β2)\implies 2.sin(\alpha+\beta).sin\frac{\beta}{2}=cos(\alpha+\frac{\beta}{2})-cos(\alpha+\frac{3\beta}{2})

    2.sin(α+2β).sinβ2=cos(α+2ββ2)cos(α+2.β+β2)\implies 2.sin(\alpha+2\beta).sin\frac{\beta}{2}=cos(\alpha+2\beta-\frac{\beta}{2})-cos(\alpha+2.\beta+\frac{\beta}{2})

\bullet

\bullet

\bullet

\bullet

\bullet

    2.sin(α+(n1)β).sinβ2=cos(α+(n1)ββ2)cos(α+(n1).β+β2)\implies 2.sin(\alpha+(n-1)\beta).sin\frac{\beta}{2}=cos(\alpha+(n-1)\beta-\frac{\beta}{2})-cos(\alpha+(n-1).\beta+\frac{\beta}{2})

By adding, we get

2.sinβ2[sinα+sin(α+β)+.....+sin(α+(n1)β)]=cos(αβ2)cos(α+(n12).β)2.sin\frac{\beta}{2}[sin\alpha+sin(\alpha+\beta)+.....+sin(\alpha+(n-1)\beta)]=cos(\frac{\alpha-\beta}{2})-cos(\alpha+(\frac{n-1}{2}).\beta)

    2.sinβ2×S=2sin(α+(n12).β).sinn.β2\implies 2.sin\frac{\beta}{2} \times S=2sin(\alpha+(\frac{n-1}{2}).\beta).sin\frac{n.\beta}{2}     S=sinα+sin(α+β)+......sin(α+(n1)β)=sinnβ2sinβ2.sin(α+(n1)β2)\implies S=sin\alpha + sin(\alpha + \beta) + ...... sin(\alpha + (n-1)\beta) = \frac{sin\frac{n\beta}{2}}{sin\frac{\beta}{2}}. sin(\alpha + (n-1)\frac{\beta}{2})

In the similar way,we can prove cosα+cos(α+β)+......+cos(α+(n1)β)=sinnβ2sinβ2.cos(α+(n1)β2)cos\alpha + cos(\alpha + \beta) + ......+cos(\alpha + (n-1)\beta) = \frac{sin\frac{n\beta}{2}}{sin\frac{\beta}{2}}. cos(\alpha + (n-1)\frac{\beta}{2})

To prove this, we will use the formula 2.cosA.cosB=sin(A+B)sin(AB)\boxed{2.cosA.cosB=sin(A+B)-sin(A-B)}

enjoy !

Sandeep Bhardwaj - 6 years, 7 months ago

Log in to reply

Thanks for sharing! You are quite good at Latex

Kartik Sharma - 6 years, 7 months ago

Log in to reply

and more.. (I can't write names of all of 'em).

Kartik Sharma - 6 years, 7 months ago

If you have some more of which you need derivations of, you can share them here!

Kartik Sharma - 6 years, 7 months ago

7. Proof for the integrating factor - I=ep(x)dxI = {e}^{\int{p(x)} dx} where dydx+p(x)y=Q\frac{dy}{dx} + p(x)y = Q is the differential equation.

Kartik Sharma - 6 years, 7 months ago

You sir, can sometimes be so overt that it's covert.

Saurabh Chauhan - 6 years, 7 months ago

Log in to reply

ART OF IGNORING! (I also know it)

Kartik Sharma - 6 years, 7 months ago

Log in to reply

HUH! I bet you're gonna read this.

Saurabh Chauhan - 6 years, 7 months ago

AoPS (Art of Problem Solving) has the answer to your question. That's where I learnt a lot of my formulae.

Sharky Kesa - 6 years, 7 months ago

Log in to reply

Yeah! But it would be better if I get them here.

Kartik Sharma - 6 years, 7 months ago

Log in to reply

Maybe, there should be wiki pages for these.

Sharky Kesa - 6 years, 7 months ago

Log in to reply

@Sharky Kesa YEAH! Agree!

Kartik Sharma - 6 years, 7 months ago
×

Problem Loading...

Note Loading...

Set Loading...