Need help proving!

I=abxn1{(n2)x2+(n1)(a+b)x+nab}(x+a)2(x+b)2dxI=\displaystyle \int^{b}_{a}\dfrac{x^{n-1}\{(n-2)x^2+(n-1)(a+b)x+nab\}}{(x+a)^2(x+b)^2}dx

Prove that I=bn1an12(a+b)I=\dfrac{b^{n-1}-a^{n-1}}{2(a+b)}.

#Calculus

Note by Akshat Sharda
3 years, 9 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Observe that (x+b)2(x+a)2=(ba)(2x+a+b)(x+b)^2 - (x+a)^2 = (b-a)(2x+a+b). Now

I=abxn1{(n2)x2+(n1)(a+b)x+nab}(x+a)2(x+b)2 dx=babaabxn1{(n2)x2+(n1)(a+b)x+nab}(x+a)2(x+b)2 dx=babaabxn1{n(x2+(a+b)x+ab)x(2x+a+b)}(x+a)2(x+b)2 dx=1baabxn1{(ba)n(x+a)(x+b)x(ba)(2x+a+b)}(x+a)2(x+b)2 dx=1baabxn1{(ba)n(x+a)(x+b)x((x+b)2(x+a)2)}(x+a)2(x+b)2 dx=1baab[n(ba)xn1(x+a)(x+b)xn{1(x+a)21(x+b)2}] dx=1baab[nxn1{1x+a1x+b}xn{1(x+a)21(x+b)2}] dx=1baabd(xn{1x+a1x+b})=1ba(xn{1x+a1x+b})ab=xn(x+a)(x+b)ab=bn1an12(a+b)\begin{aligned} I &= \int_a^b \dfrac{x^{n-1} \left\{ (n-2)x^2 + (n-1)(a+b)x + nab \right\}}{(x+a)^2 (x+b)^2} \ \mathrm{d}x \\ &= \dfrac{b-a}{b-a} \cdot \int_a^b \dfrac{x^{n-1} \left\{ (n-2)x^2 + (n-1)(a+b)x + nab \right\}}{(x+a)^2 (x+b)^2} \ \mathrm{d}x \\ &= \dfrac{b-a}{b-a} \cdot \int_a^b \dfrac{x^{n-1} \left\{ n(x^2 + (a+b)x + ab) - x(2x+a+b) \right\}}{(x+a)^2 (x+b)^2} \ \mathrm{d}x \\ &= \dfrac{1}{b-a} \cdot \int_a^b \dfrac{x^{n-1} \left\{ (b-a)n(x+a)(x+b) - x(b-a)(2x+a+b) \right\}}{(x+a)^2 (x+b)^2} \ \mathrm{d}x \\ &= \dfrac{1}{b-a} \cdot \int_a^b \dfrac{x^{n-1} \left\{ (b-a)n(x+a)(x+b) - x((x+b)^2 - (x+a)^2) \right\}}{(x+a)^2 (x+b)^2} \ \mathrm{d}x \\ &= \dfrac{1}{b-a} \cdot \int_a^b \left[ \dfrac{n(b-a)x^{n-1}}{(x+a)(x+b)} - x^n \left\{ \dfrac{1}{(x+a)^2} - \dfrac{1}{(x+b)^2} \right\} \right] \ \mathrm{d}x \\ &= \dfrac{1}{b-a} \cdot \int_a^b \left[ nx^{n-1} \left\{ \dfrac{1}{x+a} - \dfrac{1}{x+b} \right\} - x^n \left\{ \dfrac{1}{(x+a)^2} - \dfrac{1}{(x+b)^2} \right\} \right] \ \mathrm{d}x \\ &= \dfrac{1}{b-a} \cdot \int_a^b \mathrm{d} \left( x^n \left\{ \dfrac{1}{x+a} - \dfrac{1}{x+b} \right\} \right) \\ &= \dfrac{1}{b-a} \cdot \left( x^n \left\{ \dfrac{1}{x+a} - \dfrac{1}{x+b} \right\} \right) {\huge |}_a^b \\ &= \dfrac{x^n}{(x+a)(x+b)} {\huge |}_a^b \\ &= \boxed{\dfrac{b^{n-1} - a^{n-1}}{2(a+b)}} \end{aligned}

Tapas Mazumdar - 3 years, 9 months ago

Log in to reply

Great solution! (+1)

Akshat Sharda - 3 years, 9 months ago

Log in to reply

Thank you. :)

Tapas Mazumdar - 3 years, 9 months ago

Log in to reply

@Tapas Mazumdar Are you also preparing for JEE?

Akshat Sharda - 3 years, 9 months ago

Log in to reply

@Akshat Sharda Yes. I'm studying in FIITJEE at Raipur, CG.

Tapas Mazumdar - 3 years, 9 months ago

Really good solution! (+0!)

Harsh Shrivastava - 3 years, 9 months ago

Log in to reply

Haha! :P

Tapas Mazumdar - 3 years, 9 months ago

WHAT THE HECK IS THAT! I know its calculus but that is a very long equation.

Jenson Oesterreicher - 3 years, 8 months ago

Log in to reply

Well for a math lover like me, I like to deal with beautiful long expressions that turn finally to a small answer.

Tapas Mazumdar - 3 years, 8 months ago

Hello, Some of the important books for preparing JEE Maths are ML KHANNA IA MARRON for basic concepts SL Loney for Coordinate geometry
SL Loney for Trigonometry Hall knight for Higher Algebra You must also check out for [url="https://scoop.eduncle.com/jee-advanced-exam-date-notification"] </a>JEE Advanced Date 2018 [/url]

Rahul Sharma - 3 years, 8 months ago
×

Problem Loading...

Note Loading...

Set Loading...