I=∫abxn−1{(n−2)x2+(n−1)(a+b)x+nab}(x+a)2(x+b)2dxI=\displaystyle \int^{b}_{a}\dfrac{x^{n-1}\{(n-2)x^2+(n-1)(a+b)x+nab\}}{(x+a)^2(x+b)^2}dxI=∫ab(x+a)2(x+b)2xn−1{(n−2)x2+(n−1)(a+b)x+nab}dx
Prove that I=bn−1−an−12(a+b)I=\dfrac{b^{n-1}-a^{n-1}}{2(a+b)}I=2(a+b)bn−1−an−1.
Note by Akshat Sharda 3 years, 9 months ago
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
_italics_
**bold**
__bold__
- bulleted- list
1. numbered2. list
paragraph 1paragraph 2
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
This is a quote
# I indented these lines # 4 spaces, and now they show # up as a code block. print "hello world"
\(
\)
\[
\]
2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Observe that (x+b)2−(x+a)2=(b−a)(2x+a+b)(x+b)^2 - (x+a)^2 = (b-a)(2x+a+b)(x+b)2−(x+a)2=(b−a)(2x+a+b). Now
I=∫abxn−1{(n−2)x2+(n−1)(a+b)x+nab}(x+a)2(x+b)2 dx=b−ab−a⋅∫abxn−1{(n−2)x2+(n−1)(a+b)x+nab}(x+a)2(x+b)2 dx=b−ab−a⋅∫abxn−1{n(x2+(a+b)x+ab)−x(2x+a+b)}(x+a)2(x+b)2 dx=1b−a⋅∫abxn−1{(b−a)n(x+a)(x+b)−x(b−a)(2x+a+b)}(x+a)2(x+b)2 dx=1b−a⋅∫abxn−1{(b−a)n(x+a)(x+b)−x((x+b)2−(x+a)2)}(x+a)2(x+b)2 dx=1b−a⋅∫ab[n(b−a)xn−1(x+a)(x+b)−xn{1(x+a)2−1(x+b)2}] dx=1b−a⋅∫ab[nxn−1{1x+a−1x+b}−xn{1(x+a)2−1(x+b)2}] dx=1b−a⋅∫abd(xn{1x+a−1x+b})=1b−a⋅(xn{1x+a−1x+b})∣ab=xn(x+a)(x+b)∣ab=bn−1−an−12(a+b)\begin{aligned} I &= \int_a^b \dfrac{x^{n-1} \left\{ (n-2)x^2 + (n-1)(a+b)x + nab \right\}}{(x+a)^2 (x+b)^2} \ \mathrm{d}x \\ &= \dfrac{b-a}{b-a} \cdot \int_a^b \dfrac{x^{n-1} \left\{ (n-2)x^2 + (n-1)(a+b)x + nab \right\}}{(x+a)^2 (x+b)^2} \ \mathrm{d}x \\ &= \dfrac{b-a}{b-a} \cdot \int_a^b \dfrac{x^{n-1} \left\{ n(x^2 + (a+b)x + ab) - x(2x+a+b) \right\}}{(x+a)^2 (x+b)^2} \ \mathrm{d}x \\ &= \dfrac{1}{b-a} \cdot \int_a^b \dfrac{x^{n-1} \left\{ (b-a)n(x+a)(x+b) - x(b-a)(2x+a+b) \right\}}{(x+a)^2 (x+b)^2} \ \mathrm{d}x \\ &= \dfrac{1}{b-a} \cdot \int_a^b \dfrac{x^{n-1} \left\{ (b-a)n(x+a)(x+b) - x((x+b)^2 - (x+a)^2) \right\}}{(x+a)^2 (x+b)^2} \ \mathrm{d}x \\ &= \dfrac{1}{b-a} \cdot \int_a^b \left[ \dfrac{n(b-a)x^{n-1}}{(x+a)(x+b)} - x^n \left\{ \dfrac{1}{(x+a)^2} - \dfrac{1}{(x+b)^2} \right\} \right] \ \mathrm{d}x \\ &= \dfrac{1}{b-a} \cdot \int_a^b \left[ nx^{n-1} \left\{ \dfrac{1}{x+a} - \dfrac{1}{x+b} \right\} - x^n \left\{ \dfrac{1}{(x+a)^2} - \dfrac{1}{(x+b)^2} \right\} \right] \ \mathrm{d}x \\ &= \dfrac{1}{b-a} \cdot \int_a^b \mathrm{d} \left( x^n \left\{ \dfrac{1}{x+a} - \dfrac{1}{x+b} \right\} \right) \\ &= \dfrac{1}{b-a} \cdot \left( x^n \left\{ \dfrac{1}{x+a} - \dfrac{1}{x+b} \right\} \right) {\huge |}_a^b \\ &= \dfrac{x^n}{(x+a)(x+b)} {\huge |}_a^b \\ &= \boxed{\dfrac{b^{n-1} - a^{n-1}}{2(a+b)}} \end{aligned}I=∫ab(x+a)2(x+b)2xn−1{(n−2)x2+(n−1)(a+b)x+nab} dx=b−ab−a⋅∫ab(x+a)2(x+b)2xn−1{(n−2)x2+(n−1)(a+b)x+nab} dx=b−ab−a⋅∫ab(x+a)2(x+b)2xn−1{n(x2+(a+b)x+ab)−x(2x+a+b)} dx=b−a1⋅∫ab(x+a)2(x+b)2xn−1{(b−a)n(x+a)(x+b)−x(b−a)(2x+a+b)} dx=b−a1⋅∫ab(x+a)2(x+b)2xn−1{(b−a)n(x+a)(x+b)−x((x+b)2−(x+a)2)} dx=b−a1⋅∫ab[(x+a)(x+b)n(b−a)xn−1−xn{(x+a)21−(x+b)21}] dx=b−a1⋅∫ab[nxn−1{x+a1−x+b1}−xn{(x+a)21−(x+b)21}] dx=b−a1⋅∫abd(xn{x+a1−x+b1})=b−a1⋅(xn{x+a1−x+b1})∣ab=(x+a)(x+b)xn∣ab=2(a+b)bn−1−an−1
Log in to reply
Great solution! (+1)
Thank you. :)
@Tapas Mazumdar – Are you also preparing for JEE?
@Akshat Sharda – Yes. I'm studying in FIITJEE at Raipur, CG.
Really good solution! (+0!)
Haha! :P
WHAT THE HECK IS THAT! I know its calculus but that is a very long equation.
Well for a math lover like me, I like to deal with beautiful long expressions that turn finally to a small answer.
Hello, Some of the important books for preparing JEE Maths are ML KHANNA IA MARRON for basic concepts SL Loney for Coordinate geometry SL Loney for Trigonometry Hall knight for Higher Algebra You must also check out for [url="https://scoop.eduncle.com/jee-advanced-exam-date-notification"] </a>JEE Advanced Date 2018 [/url]
Problem Loading...
Note Loading...
Set Loading...
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
Observe that (x+b)2−(x+a)2=(b−a)(2x+a+b). Now
I=∫ab(x+a)2(x+b)2xn−1{(n−2)x2+(n−1)(a+b)x+nab} dx=b−ab−a⋅∫ab(x+a)2(x+b)2xn−1{(n−2)x2+(n−1)(a+b)x+nab} dx=b−ab−a⋅∫ab(x+a)2(x+b)2xn−1{n(x2+(a+b)x+ab)−x(2x+a+b)} dx=b−a1⋅∫ab(x+a)2(x+b)2xn−1{(b−a)n(x+a)(x+b)−x(b−a)(2x+a+b)} dx=b−a1⋅∫ab(x+a)2(x+b)2xn−1{(b−a)n(x+a)(x+b)−x((x+b)2−(x+a)2)} dx=b−a1⋅∫ab[(x+a)(x+b)n(b−a)xn−1−xn{(x+a)21−(x+b)21}] dx=b−a1⋅∫ab[nxn−1{x+a1−x+b1}−xn{(x+a)21−(x+b)21}] dx=b−a1⋅∫abd(xn{x+a1−x+b1})=b−a1⋅(xn{x+a1−x+b1})∣ab=(x+a)(x+b)xn∣ab=2(a+b)bn−1−an−1
Log in to reply
Great solution! (+1)
Log in to reply
Thank you. :)
Log in to reply
Log in to reply
Really good solution! (+0!)
Log in to reply
Haha! :P
WHAT THE HECK IS THAT! I know its calculus but that is a very long equation.
Log in to reply
Well for a math lover like me, I like to deal with beautiful long expressions that turn finally to a small answer.
Hello, Some of the important books for preparing JEE Maths are ML KHANNA IA MARRON for basic concepts SL Loney for Coordinate geometry
SL Loney for Trigonometry Hall knight for Higher Algebra You must also check out for [url="https://scoop.eduncle.com/jee-advanced-exam-date-notification"] </a>JEE Advanced Date 2018 [/url]