Hello guys, I need some help in trigonometry! I am really not so good at it!😝
If xcos(θ)=ycos(θ+120∘)=zcos(θ+240∘)x\cos(\theta)=y\cos(\theta+120^{\circ})=z\cos(\theta+240^{\circ})xcos(θ)=ycos(θ+120∘)=zcos(θ+240∘)
Then find the value of xy+yz+zxxy+yz+zxxy+yz+zx
Note by Akshay Yadav 5 years, 5 months ago
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
_italics_
**bold**
__bold__
- bulleted- list
1. numbered2. list
paragraph 1paragraph 2
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
This is a quote
# I indented these lines # 4 spaces, and now they show # up as a code block. print "hello world"
\(
\)
\[
\]
2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
xcos(θ)=ycos(θ+120∘)=zcos(θ+240∘)⇒ℜ(xeiθ)=ℜ(yei(θ+120∘))=ℜ(zei(θ+240∘))ℜ(x)=ℜ(yei120∘)=ℜ(zei240∘)⇒x=ycos(120∘)=zcos(240∘)x=−12y=−12z⇒−2x=y=z \begin{aligned} x\cos (\theta) & = y \cos (\theta + 120^\circ) = z \cos (\theta + 240^\circ) \\ \Rightarrow \Re \left( x e^{i \theta} \right) & = \Re \left( y e^{i (\theta + 120^\circ)} \right) = \Re \left( z e^{i (\theta + 240^\circ)} \right) \\ \Re \left( x \right) & = \Re \left( y e^{i120^\circ} \right) = \Re \left( z e^{i 240^\circ} \right) \\ \Rightarrow x & = y \cos (120^\circ) = z \cos (240^\circ) \\ x & = -\frac{1}{2} y = -\frac{1}{2} z \\ \Rightarrow -2x & = y = z \end{aligned} xcos(θ)⇒ℜ(xeiθ)ℜ(x)⇒xx⇒−2x=ycos(θ+120∘)=zcos(θ+240∘)=ℜ(yei(θ+120∘))=ℜ(zei(θ+240∘))=ℜ(yei120∘)=ℜ(zei240∘)=ycos(120∘)=zcos(240∘)=−21y=−21z=y=z
⇒xy+yz+zx=−2x2+4x2−2x2=0\Rightarrow xy +yz + zx = -2x^2 + 4x^2 - 2x^2 = \boxed{0}⇒xy+yz+zx=−2x2+4x2−2x2=0
Log in to reply
Neat & fast :)
Thanks for telling me a new way to do this question.
One possible approach is as follows.
From the given equations we have that y=cos(θ)cos(θ+120)xy = \dfrac{\cos(\theta)}{\cos(\theta + 120)}xy=cos(θ+120)cos(θ)x and that z=cos(θ)cos(θ+240)x.z = \dfrac{\cos(\theta)}{\cos(\theta + 240)}x.z=cos(θ+240)cos(θ)x.
Then xy+yz+xz=x2∗(cos(θ)cos(θ+120)+cos2(θ)cos(θ+120)cos(θ+240)+cos(θ)cos(θ+240))=xy + yz + xz = x^{2}*\left(\dfrac{\cos(\theta)}{\cos(\theta + 120)} + \dfrac{\cos^{2}(\theta)}{\cos(\theta + 120)\cos(\theta + 240)} + \dfrac{\cos(\theta)}{\cos(\theta + 240)}\right) =xy+yz+xz=x2∗(cos(θ+120)cos(θ)+cos(θ+120)cos(θ+240)cos2(θ)+cos(θ+240)cos(θ))=
x2∗cos(θ)cos(θ+120)cos(θ+240)(cos(θ+240)+cos(θ)+cos(θ+120))x^{2} * \dfrac{\cos(\theta)}{\cos(\theta + 120)\cos(\theta + 240)}(\cos(\theta + 240) + \cos(\theta) + \cos(\theta + 120))x2∗cos(θ+120)cos(θ+240)cos(θ)(cos(θ+240)+cos(θ)+cos(θ+120)), (A).
But cos(θ+120)=cos(θ)cos(120)−sin(θ)sin(120)=−12(cos(θ)+3sin(θ))\cos(\theta + 120) = \cos(\theta)\cos(120) - \sin(\theta)\sin(120) = -\dfrac{1}{2}(\cos(\theta) + \sqrt{3}\sin(\theta))cos(θ+120)=cos(θ)cos(120)−sin(θ)sin(120)=−21(cos(θ)+3sin(θ))
and cos(θ+240)=cos(θ)cos(240)−sin(θ)sin(240)=−12(cos(θ)−3sin(θ)).\cos(\theta + 240) = \cos(\theta)\cos(240) - \sin(\theta)\sin(240) = -\dfrac{1}{2}(\cos(\theta) - \sqrt{3}\sin(\theta)).cos(θ+240)=cos(θ)cos(240)−sin(θ)sin(240)=−21(cos(θ)−3sin(θ)).
Thus cos(θ+120)+cos(θ+240)=−cos(θ)\cos(\theta + 120) + \cos(\theta + 240) = -\cos(\theta)cos(θ+120)+cos(θ+240)=−cos(θ), which makes expression (A) come out to 0.\boxed{0}.0.
Thank you very much.
Problem Loading...
Note Loading...
Set Loading...
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
xcos(θ)⇒ℜ(xeiθ)ℜ(x)⇒xx⇒−2x=ycos(θ+120∘)=zcos(θ+240∘)=ℜ(yei(θ+120∘))=ℜ(zei(θ+240∘))=ℜ(yei120∘)=ℜ(zei240∘)=ycos(120∘)=zcos(240∘)=−21y=−21z=y=z
⇒xy+yz+zx=−2x2+4x2−2x2=0
Log in to reply
Neat & fast :)
Thanks for telling me a new way to do this question.
One possible approach is as follows.
From the given equations we have that y=cos(θ+120)cos(θ)x and that z=cos(θ+240)cos(θ)x.
Then xy+yz+xz=x2∗(cos(θ+120)cos(θ)+cos(θ+120)cos(θ+240)cos2(θ)+cos(θ+240)cos(θ))=
x2∗cos(θ+120)cos(θ+240)cos(θ)(cos(θ+240)+cos(θ)+cos(θ+120)), (A).
But cos(θ+120)=cos(θ)cos(120)−sin(θ)sin(120)=−21(cos(θ)+3sin(θ))
and cos(θ+240)=cos(θ)cos(240)−sin(θ)sin(240)=−21(cos(θ)−3sin(θ)).
Thus cos(θ+120)+cos(θ+240)=−cos(θ), which makes expression (A) come out to 0.
Log in to reply
Thank you very much.