No L'Hospital's Rule

Can you prove that limx11xm1xn=mn\displaystyle \lim _{ x\rightarrow 1 }{ \frac { 1-{ x }^{ m } }{ 1-{ x }^{ n } } } =\frac { m }{ n } without using L'Hospital's rule for counting number m and n?

Hint: I did it by using the binomial theorem.
Bonus points if you can prove it for real number m and n, because my proof can't do that and I'd be interested to see it done.

#Calculus

Note by Cole Wyeth
6 years, 4 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Using the binomial theorem seems overkill. Writing it like this 1xm1x1x1xn \dfrac{1-x^m}{1-x} * \dfrac{1-x}{1-x^n} makes a much shorter solution apparent.

Siddhartha Srivastava - 6 years, 4 months ago

Log in to reply

How about the extension to real numbers?

It seems like L'Hopital needs to be used.

Calvin Lin Staff - 6 years, 3 months ago

This solution goes up to rational numbers,

limx11xm1xn=limx1(1x1k)(1+x1k+x2k++xkm)(1x1k)(1+x1k+x2k++xkn)foranyk=limx1(1+x1k+x2k++xkm)(1+x1k+x2k++xkn)=kmkn=mn\displaystyle \lim _{ x\rightarrow 1 }{ \frac { 1-{ x }^{ m } }{ 1-{ x }^{ n } } } =\lim _{ x\rightarrow 1 }{ \frac { \left( 1-{ x }^{ \frac { 1 }{ k } } \right) \left( 1+{ x }^{ \frac { 1 }{ k } }+{ x }^{ \frac { 2 }{ k } }+\cdots +{ x }^{ km } \right) }{ \left( 1-{ x }^{ \frac { 1 }{ k } } \right) \left( 1+{ x }^{ \frac { 1 }{ k } }+{ x }^{ \frac { 2 }{ k } }+\cdots +{ x }^{ kn } \right) } } for\quad any\quad k\\ =\lim _{ x\rightarrow 1 } \frac { \left( 1+{ x }^{ \frac { 1 }{ k } }+{ x }^{ \frac { 2 }{ k } }+\cdots +{ x }^{ km } \right) }{ \left( 1+{ x }^{ \frac { 1 }{ k } }+{ x }^{ \frac { 2 }{ k } }+\cdots +{ x }^{ kn } \right) } \\ =\frac { km }{ kn } \\ =\frac { m }{ n }

Joel Yip - 5 years, 1 month ago

let S=limit as x tends to 1, (1-x^m)/(1-x^n) =limit as p tends to zero (1-e^pm)/(1-e^pn) ,where e^p=x.
applying expansion for e^pm and e^pn in numerator and denominator, S=lim as p tends to zero, (1-(1 + pm/1 + pm^2/2x1 + .........))/ (1-(1+ pn/1 + pn/2x1 +......)) , 1- 1 =0, in numerator and denominator , then taking ' m 'and 'n' outside from numerator and denominator , and substituting p=0 for rest of values, we get m/n. :) .pls correct me frnds, if there is any mistakes in my proof.

Thushar Mn - 6 years, 3 months ago

Log in to reply

@ Archit Boobna - " Since 1/kh will tend towards infinity..." You need grouping symbols around kh when it is written out horizontally, because of the Order of Operations:

1/(kh)


"We can easily show these (1+h)^2 = 1 + 2h (1+h)^4 = 1 + 4h (1+(1/2)h)^2 = 1 + h"

The above are not true. You cannot use equalities. You can use the equivalents of "leads to."

Linda Slovik - 2 years, 10 months ago

well one can easily use taylor series, but a taylor series expansion is in a way equivalent to L'hospital rule when you really think about it, so would you accept that ?

limx>11(1+(x1))m1(1+(x1))n1(1+m(x1))1(1+n(x1))=mn\lim _{ x-->1 }{ \frac { 1-(1+(x-1))^{ m } }{ 1-(1+(x-1))^{ n } } \quad \simeq \quad \frac { 1-(1+m(x-1)) }{ 1-(1+n(x-1)) } =\frac { m }{ n } }

Mvs Saketh - 6 years, 3 months ago

Log in to reply

I suppose most of math is pretty much equivalent- All this stuff is derived from limits, right? I think that counts.

Cole Wyeth - 6 years, 3 months ago

Let\quad x=1+h\quad where\quad h\quad tends\quad to\quad positive\quad zero.\\ Now\quad let's\quad solve\\ \lim _{ h\rightarrow 0 }{ \frac { 1+nh }{ 1+(n-k)h } } \\ =\lim _{ h\rightarrow 0 }{ \frac { 1+nh }{ 1+nh-kh } } \\ =\lim _{ h\rightarrow 0 }{ \frac { 1+nh-kh+kh }{ 1+nh-kh } } \\ =\lim _{ h\rightarrow 0 }{ \frac { 1+nh-kh }{ 1+nh-kh } } +\frac { kh }{ 1+nh-kh } \\ =1+\lim _{ h\rightarrow 0 }{ \frac { kh }{ 1+(n-k)h } } \\ =1+\frac { 1 }{ \lim _{ h\rightarrow 0 }{ \frac { 1+(n-k)h }{ kh } } } \\ =1+\frac { 1 }{ \lim _{ h\rightarrow 0 }{ \frac { 1 }{ kh } +\frac { n-k }{ k } } } \\ Since\quad 1/kh\quad will\quad tend\quad towards\quad infinity,\quad and\quad this\quad limit\quad is\quad independent\quad of\quad other\\ "tending0s\quad or\quad tending\quad infinities",\quad \frac { n-k }{ k } \quad (a\quad finite\quad value)\quad can\quad be\quad neglected.\\ =1+\frac { 1 }{ \lim _{ h\rightarrow 0 }{ \frac { 1 }{ kh } } } \\ =1+kh\\ \\ So,\quad \frac { 1+nh }{ 1+(n-k)h } \sim 1+kh\quad as\quad h\quad tends\quad to\quad 0.\\ So,\quad \frac { 1+ah }{ 1+(a-n)h } X\frac { 1+(a-m)h }{ 1+ah } =\frac { 1+(a-m)h }{ 1+(a-n)h } \\ So,\quad \frac { 1+nh }{ 1+mh } =\frac { 1+(a-m)h }{ 1+(a-n)h } \\ Put\quad a=n,\\ \frac { 1+nh }{ 1+mh } =1+(n-m)h\\ If\quad n-m\quad is\quad constant,\quad then\quad \frac { 1+nh }{ 1+mh } \quad is\quad constant.\\ So\quad \frac { 1+(m+k)h }{ 1+mh } =\frac { 1+(m+2k)h }{ 1+(m+k)h } .\quad Put\quad m=0\\ 1+kh=\frac { 1+2kh }{ 1+kh } \\ { (1+kh) }^{ 2 }=1+2kh\\ Put\quad k=1\\ \\ We\quad can\quad easily\quad show\quad these\\ { (1+h) }^{ 2 }=1+2h\\ { (1+h) }^{ 4 }=1+4h\\ \\ { (1+(1/2)h) }^{ 2 }=1+h\\ So,\quad { (1+h) }^{ 1/2 }=1+1/2h\\ \^ \^ \quad I\quad did\quad this\quad just\quad to\quad show\quad it\quad works\quad for\quad fractions\quad also.\\ \\ So,\quad { x }^{ n }=1+nh\quad as\quad x\quad tends\quad to\quad 1\quad and\quad h\quad tends\quad to\quad 0.\\ So\quad \frac { 1-{ x }^{ m } }{ 1-{ x }^{ n } } =\frac { 1-(1+mh) }{ 1-(1+nh) } =\boxed { \frac { m }{ n } }

Archit Boobna - 6 years, 3 months ago

Log in to reply

Seems hardcore, but I'm a little confused by how you defined your variables at the beginning of the proof. Am I missing something?

Cole Wyeth - 6 years, 3 months ago

Log in to reply

I am sorry, this is a bit confusing because I used "m" and "n" in the beginning also and the end also, but they have completely different roles

Archit Boobna - 6 years, 3 months ago
×

Problem Loading...

Note Loading...

Set Loading...