I only did a diagramatic justification \(This\quad problem\quad gives\quad another\quad model\quad for\quad hyperbolic\quad geometry\\ Our\quad points\quad will\quad be\quad the\quad points\quad in\quad the\quad open\quad disc:\\ D=\left\{ \left( x,y \right) :\quad { x }^{ 2 }+{ y }^{ 2 }<1 \right\} \\ The\quad lines\quad will\quad be\quad arcs\quad of\quad circles\quad that\quad intersect\quad the\quad \\ boundary\quad of\quad D.\\ Show\quad that\quad this\quad model\quad satisfies\quad the\quad hyperbolic\quad axiom.\\ \\ \)
I don't know if it requires any analysis. Sorry about my bad english
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
There are no comments in this discussion.