I was playing with Hailstorm a few years back (and why that proof took 30 pages I'll never know!). I realized that it was actually a base 4 problem rather than a binary problem. As soon as I did that, I was able to "map" all real numbers to their "primary" node...1, 5, 21, 85, etc. I wanted to prove to a mathematician friend that any power of 4 minus 1 was evenly divisible by 3. And I couldn't remember enough of my high school geometry to prove it. So I came up with the following: Assume "n" to be the base of the numbering system. (One great thing about this...it doesn't matter how big "n" is). If "n" is the base of the system, then n to the x power is n followed by x zeroes. Now assume "m" to be one less than "n". Subtract 1 from n to the x and the result will be a string of x m's...obviously divisible by m. My friend was not overly amused, and proceeded to show me the traditional proof...which I promptly forgot. I just wonder if others use this sort of slightly unusual solution to some of the basic theorems and axioms of geometry. That seems to be a lot of what I'm seeing on this site.
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
Thank you...as I stated, I'd forgotten a lot of what I learned. The induction discussion is interesting, and I plan to give it a more thorough reading as I have the time.
You can just use induction