I found this problem quite interesting.
Sharky has a word of 2015 letters made of S and K letters only (e.g. SKSSS, KSKSK). A palindrome is a word which can be read the same as looking from left to right or right to left.
Sharky decides to cut up his word into sub-words such that each sub-word is a palindrome. Given that each sub-word must contain a natural number of letters (No cutting up a letter in half), find the minimum number of sub-words that can be cut out for any word of Sharky's.
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
Got an entry on OEIS. The formula there says 672.
Log in to reply
Damn, that looks neat. Anyone got a proof for that? The best I got was 674.