Numbers, Roots, Cube Roots

Prove that (i) 5 < 51/2+51/3+51/45^{1/2}+5^{1/3}+5^{1/4}

(ii)11 > 111/2+111/3+111/411^{1/2}+11^{1/3}+11^{1/4}

#NumberTheory

Note by Ayush Choubey
6 years, 6 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

(i)

Proof by Contradiction

Consider

551/2+51/3+51/4,with lcm(2,3,4)=12, let z=51/12z12z6+z4+z3z9z3+z+1z9z3z+159/1253/1251/12+153/451/451/12+151/4(51)51/12+1,square both sides5(625)51/6+251/12+1651051/6+251/12+16551/6+251/12+11>1+21+11=14,square both sides again180>142,which is absurd \begin{aligned} 5 & \geq & 5^{1/2} + 5^{1/3} + 5^{1/4}, \text{with } \text{lcm}(2,3,4) = 12 , \text{ let } z = 5^{1/12} \\ z^{12} & \geq & z^6 + z^4 + z^3 \\ z^9 & \geq & z^3 + z + 1 \\ z^9 - z^3 & \geq & z + 1 \\ 5^{9/12} - 5^{3/12} & \geq & 5^{1/12} + 1 \\ 5^{3/4} - 5^{1/4} & \geq & 5^{1/12} + 1 \\ 5^{1/4} (\sqrt{5} - 1) & \geq & 5^{1/12} + 1, \text{square both sides} \\ \sqrt{5} (6 - 2\sqrt{5}) & \geq & 5^{1/6} + 2 \cdot 5^{1/12} + 1 \\ 6 \sqrt{5} - 10 & \geq & 5^{1/6} + 2 \cdot 5^{1/12} + 1 \\ 6 \sqrt{5} & \geq & 5^{1/6} + 2 \cdot 5^{1/12} + 11 > 1 + 2 \cdot 1 + 11 = 14, \text{square both sides again}\\ 180 & > & 14^2, \text{which is absurd} \\ \end{aligned}

Hence, 5<51/2+51/3+51/4 5 < 5^{1/2} + 5^{1/3} + 5^{1/4}

Another method is to consider the AM-GM inequality. Suppose 551/2+51/3+51/4 5 \geq 5^{1/2} + 5^{1/3} + 5^{1/4}

5351/2+51/3+51/43>51/2+1/3+1/43=513/36 \LARGE \Rightarrow \frac {5}{3} \geq \frac {5^{1/2} + 5^{1/3} + 5^{1/4} }{3} > \sqrt[3]{ 5^{1/2 + 1/3+1/4} } = 5^{13/36}

(53)36>513 \large \Rightarrow \left ( \frac {5}{3} \right )^{36} > 5^{13}

523>336 \large \Rightarrow 5^{23} > 3^{36}

524>523>336 \large \Rightarrow 5^{24} > 5^{23} > 3^{36}

52>33 \large \Rightarrow 5^2 > 3^3

Which is absurd


(ii)

Likewise, using the same method above (first), we have

z9z3z+1113/4111/4111/12+1111/4(111)111/12+1,square both sides11(12211)111/6+2111/12+1<2+22+1=7121122<71211<29 \begin{aligned} z^9 - z^3 & \leq & z + 1 \\ 11^{3/4} - 11^{1/4} & \leq & 11^{1/12} + 1 \\ 11^{1/4} ( \sqrt{11} - 1) & \leq & 11^{1/12} + 1, \text{square both sides} \\ \sqrt{11} (12 - 2\sqrt{11}) & \leq & 11^{1/6} + 2 \cdot 11^{1/12} + 1 < 2 + 2 \cdot 2 + 1 = 7 \\ 12 \sqrt{11} - 22 < 7 \\ 12\sqrt{11} < 29 \\ \end{aligned}

Square both sides yields a contradiction, thus 11<111/2+111/3+111/4 11 < 11^{1/2} + 11^{1/3} + 11^{1/4}

Alternatively, it's trivial to show that 111/2<4,111/3<3,111/4<211^{1/2} < 4, 11^{1/3} < 3, 11^{1/4} < 2

Add them up gives 111/2+111/3+111/4<911^{1/2} + 11^{1/3} + 11^{1/4} < 9

Now consider the negation for the given inequality, that is 11111/2+111/3+111/4<911 \leq 11^{1/2} + 11^{1/3} + 11^{1/4} < 9 which is absurd.

Another method is to apply the Power Mean Inequality.

Suppose that 11111/2+111/3+111/4 11 \leq 11^{1/2} + 11^{1/3} + 11^{1/4} , then

113111/2+111/3+111/43<116+114+113312<2116312 \LARGE \Rightarrow \frac {11}{3} \leq \frac {11^{1/2} + 11^{1/3} + 11^{1/4}}{3} < \sqrt[12] { \frac { 11^6 + 11^4 + 11^3}{3} } < \sqrt[12] { \frac {2 \cdot 11^6}{3} }

(113)12<21163 \large \Rightarrow \left (\frac {11}{3} \right )^{12} < \frac {2 \cdot 11^6}{3}

(113)12<21163<31163=116 \large \Rightarrow \left (\frac {11}{3} \right )^{12} < \frac {2 \cdot 11^6}{3} < \frac {3 \cdot 11^6}{3} = 11^6

116<31211<32 \large \Rightarrow 11^6 < 3^{12} \Rightarrow 11 < 3^2 which is invalid.

Pi Han Goh - 6 years, 6 months ago

Log in to reply

NICE SOL. ....

Ayush Choubey - 6 years, 6 months ago

(2.2)2=4.84<5(2.2)^{2}=4.84<5 or5>2.2\sqrt{5}>2.2. 51/4>2.2>1.45^{1/4}>\sqrt{2.2}>1.4 since (1.4)2=1.96<2.2(1.4)^2=1.96<2.2

Hence,51/3>51/4>1.45^{1/3}>5^{1/4}>1.4. So,51/2+51/3+51/4>2.2+1.4+1.4=55^{1/2}+5^{1/3}+5^{1/4}>2.2+1.4+1.4=5.

I will prove that for any n9n≥9, n1/2+n1/3+n1/4<nn^{1/2}+n^{1/3}+n^{1/4}<n.

Since,n9n≥9,n29nn^{2}≥9n or n3nn≥3\sqrt{n}.So,n1/2+n1/3+n1/4<3n1/2nn^{1/2}+n^{1/3}+n^{1/4}<3n^{1/2}≤n

Souryajit Roy - 6 years, 6 months ago

Log in to reply

This is the perfect solution. This was asked in INMO, as far as I remember.

Mehul Arora - 5 years ago
×

Problem Loading...

Note Loading...

Set Loading...