\[ \int_{a}^{b} f(x) \ \mathrm{d}x = (b-a) \sum_{n=1}^{\infty} \sum_{k=1}^{2^n - 1} \dfrac{(-1)^{k+1}}{2^{n}} f \left( a+ \left(\frac{b-a}{2^n}\right) k \right) \]
Prove the identity above, given that the function has a bounded variation on .
This is a part of the set Formidable Series and Integrals
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
There are no comments in this discussion.