Pairwise products

For any set of real numbers, R=x,y,zR = {x, y, z}, let sum of pairwise products, S=xy+xz+yzS = xy + xz + yz Given that x+y+z=1x + y + z = 1, prove that S13S\le \frac { 1 }{ 3 }

Note by Abdulrahman El Shafei
6 years, 5 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Letx=1/3+a,y=1/3+b,andz=1/3+c.x+y+z=1/3+a+1/3+b+1/3+c=1+a+b+c.Butasx+y+z=1,wededucethata+b+c=0.(a+b+c)2=a2+b2+c2+2(ab+ac+bc)=02(ab+ac+bc)=(a2+b2+c2)ab+ac+bc=(a2+b2+c2)/2=d,whered0Soxy+xz+yz=(1/3+a)(1/3+b)+(1/3+a)(1/3+c)+(1/3+b)(1/3+c)=1/9+a/3+b/3+ab+1/9+a/3+c/3+ac+1/9+b/3+c/3+bc=1/3+(2/3)(a+b+c)+ab+ac+bcAsa+b+c=0andab+ac+bc=d,weget,S=xy+xz+yz=1/3d1/3=1/3+(2/3)(a+b+c)+ab+ac+bcAsa+b+c=0andab+ac+bc=d,weget,S=xy+xz+yz=1/3d1/3Let\quad x=1/3+a,y=1/3+b,and\quad z=1/3+c.\\ x+y+z=1/3+a+1/3+b+1/3+c=1+a+b+c.\\ But\quad as\quad x+y+z=1,we\quad deduce\quad that\quad a+b+c=0.\\ \therefore { (a+b+c) }^{ 2 }={ a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 }+2(ab+ac+bc)=0\\ \quad \quad 2(ab+ac+bc)=-({ a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 })\\ \therefore \quad ab+ac+bc=-({ a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 })/2=-d,where\quad d\ge 0\\ So\quad xy+xz+yz\\ =(1/3+a)(1/3+b)+(1/3+a)(1/3+c)+(1/3+b)(1/3+c)\\ =1/9+a/3+b/3+ab+1/9+a/3+c/3+ac+1/9+b/3+c/3+bc\\ =1/3+(2/3)(a+b+c)+ab+ac+bc\\ As\quad a+b+c=0\quad and\quad ab+ac+bc=-d,we\quad get,\\ S=xy+xz+yz=1/3-d1/3=1/3+(2/3)(a+b+c)+ab+ac+bc\\ As\quad a+b+c=0\quad and\quad ab+ac+bc=-d,we\quad get,\\ S=xy+xz+yz=1/3-d\le 1/3

Abdulrahman El Shafei - 6 years, 5 months ago
×

Problem Loading...

Note Loading...

Set Loading...