Pascal's Triangle and Fibonacci numbers

Let fnf_{n} denote the nthnth Fibonacci number. Prove that fn=(n10)+(n21)+(n32)+...+(nkk1),f_{n} = \dbinom{n-1}{0}+\dbinom{n-2}{1}+\dbinom{n-3}{2}+...+\dbinom{n-k}{k-1}, where k=n+12k= \lfloor\frac{n+1}{2}\rfloor Would appreciate if anyone posts a simple and not that long proof for this.

#NumberTheory

Note by Marc Vince Casimiro
6 years, 6 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

You can prove this by induction. I'll demonstrate how to show that f10=f9+f8f_{10}=f_9+f_8:

f10=(90)+(81)+(72)+(63)+(54)f_{10}=\left(\begin{matrix}9\\0\end{matrix}\right)+\left(\begin{matrix}8\\1\end{matrix}\right)+\left(\begin{matrix}7\\2\end{matrix}\right)+\left(\begin{matrix}6\\3\end{matrix}\right)+\left(\begin{matrix}5\\4\end{matrix}\right) =(90)+[(70)+(71)]+[(61)+(62)]+[(52)+(53)]+[(43)+(44)]=\left(\begin{matrix}9\\0\end{matrix}\right)+\left[\left(\begin{matrix}7\\0\end{matrix}\right)+\left(\begin{matrix}7\\1\end{matrix}\right)\right]+\left[\left(\begin{matrix}6\\1\end{matrix}\right)+\left(\begin{matrix}6\\2\end{matrix}\right)\right]+\left[\left(\begin{matrix}5\\2\end{matrix}\right)+\left(\begin{matrix}5\\3\end{matrix}\right)\right]+\left[\left(\begin{matrix}4\\3\end{matrix}\right)+\left(\begin{matrix}4\\4\end{matrix}\right)\right] =(90)+[(71)+(62)+(53)+(44)]+[(70)+(61)+(52)+(43)]=\left(\begin{matrix}9\\0\end{matrix}\right)+\left[\left(\begin{matrix}7\\1\end{matrix}\right)+\left(\begin{matrix}6\\2\end{matrix}\right)+\left(\begin{matrix}5\\3\end{matrix}\right)+\left(\begin{matrix}4\\4\end{matrix}\right)\right]+\left[\left(\begin{matrix}7\\0\end{matrix}\right)+\left(\begin{matrix}6\\1\end{matrix}\right)+\left(\begin{matrix}5\\2\end{matrix}\right)+\left(\begin{matrix}4\\3\end{matrix}\right)\right] =[(80)+(71)+(62)+(53)+(44)]+[(70)+(61)+(52)+(43)]=\left[\left(\begin{matrix}8\\0\end{matrix}\right)+\left(\begin{matrix}7\\1\end{matrix}\right)+\left(\begin{matrix}6\\2\end{matrix}\right)+\left(\begin{matrix}5\\3\end{matrix}\right)+\left(\begin{matrix}4\\4\end{matrix}\right)\right]+\left[\left(\begin{matrix}7\\0\end{matrix}\right)+\left(\begin{matrix}6\\1\end{matrix}\right)+\left(\begin{matrix}5\\2\end{matrix}\right)+\left(\begin{matrix}4\\3\end{matrix}\right)\right] =f9+f8=f_9+f_8

Be careful of odd-even parity when proving it! I used the Recursive Formula of binomial coefficient to prove it.

If I have time I may do the whole proof.

Kenny Lau - 6 years, 6 months ago

Long Proof: fn=k=0n1(n1kk)f_{n}=\displaystyle\sum_{k=0}^{n-1} \binom{n-1-k}{k} Using Pascal's formula, for each 2n2 \leq n gn1+gn2=k=0n2(n2kk)+j=0n3(n3jj)g_{n-1} + g_{n-2} = \displaystyle\sum_{k=0}^{n-2}\binom{n-2-k}{k}+ \displaystyle\sum_{j=0}^{n-3} \binom{n-3-j}{j} =(n20)+k=1n2(n2kk)+k=1n2(n2kk1)=\binom{n-2}{0} + \displaystyle\sum_{k=1}^{n-2} \binom{n-2-k}{k} + \displaystyle\sum_{k=1}^{n-2} \binom{n-2-k}{k-1} =(n20)+k=1n2((n2kk)+(n2kk1))=\binom{n-2}{0}+\displaystyle\sum_{k=1}^{n-2}\left(\binom{n-2-k}{k}+\binom{n-2-k}{k-1}\right) =(n20)+k=1n2(n1kk)=\binom{n-2}{0} + \displaystyle\sum_{k=1}^{n-2}\binom{n-1-k}{k} =(n20)+k=1n2(n1kk)+(0n1)=\binom{n-2}{0} + \displaystyle\sum_{k=1}^{n-2}\binom{n-1-k}{k} + \binom{0}{n-1} =k=0n1(n1kk)=fn=\displaystyle\sum_{k=0}^{n-1}\binom{n-1-k}{k}=f_{n} Pretty long and complex. Looking forward to the simple induction @kenny lau :)

Marc Vince Casimiro - 6 years, 6 months ago
×

Problem Loading...

Note Loading...

Set Loading...