49,4489,444889,44448889.................49, 4489, 444889, 44448889.................49,4489,444889,44448889................. In the series of the above numbers following the same pattern, prove that, each of these are whole squares of integers..
Note by Sagnik Saha 7 years, 1 month ago
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
_italics_
**bold**
__bold__
- bulleted- list
1. numbered2. list
paragraph 1paragraph 2
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
This is a quote
# I indented these lines # 4 spaces, and now they show # up as a code block. print "hello world"
\(
\)
\[
\]
2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Tn=44444....(ntimes)88888...(n−1times)9T_n = 44444....(n times) 88888... (n-1 times)9Tn=44444....(ntimes)88888...(n−1times)9
=49×(10n−1)×10n+89×(10n−1−1)×10+9= \frac{4}{9}\times(10^n-1) \times 10^n + \frac{8}{9} \times(10^{n-1}-1) \times 10 + 9=94×(10n−1)×10n+98×(10n−1−1)×10+9
=19(4×(10n−1)×10n+8(10n−1−1)×+81)= \frac{1}{9}({ 4\times(10^n-1)\times10^n + 8(10^{n-1}-1)\times + 81})=91(4×(10n−1)×10n+8(10n−1−1)×+81)
=19(4×102n−4×10n+8×(10n−10)+81)= \frac{1}{9}{( 4 \times 10^{2n} - 4 \times 10^n + 8 \times(10^n - 10) + 81)}=91(4×102n−4×10n+8×(10n−10)+81)
=19(4×102n−4×10n+8×10n−80+81)= \frac{1}{9}{( 4\times10^{2n} - 4\times10^n + 8 \times 10^n - 80 + 81)}=91(4×102n−4×10n+8×10n−80+81)
=19(4×102n+4×10n+1)= \frac{1}{9}{( 4\times10^{2n} + 4 \times 10^n + 1)}=91(4×102n+4×10n+1)
=19[(2×10n)2+2×(2×10n)+12]= \frac{1}{9}[(2\times10^n)^2 + 2\times (2\times10^n) + 1^2]=91[(2×10n)2+2×(2×10n)+12]
=19(2×10n+1)2= \frac{1}{9}(2\times10^n + 1)^2=91(2×10n+1)2
=(2×10n+13)2= (\dfrac{2 \times 10^n +1}{3})^2=(32×10n+1)2
Now note
2≡−1(mod 3)2 \equiv -1 (\mod{3} )2≡−1(mod3) and
10≡1(mod 3) ⟹ 10n≡1(mod 3)10 \equiv 1 (\mod{3} ) \implies 10^n \equiv 1 (\mod{3} )10≡1(mod3)⟹10n≡1(mod3)
⟹ 2×10n≡−1(mod 3)\implies 2\times10^n \equiv -1 (\mod{3} )⟹2×10n≡−1(mod3)
⟹ 2×10n+1≡0(mod 3)\implies 2\times10^n + 1 \equiv 0 (\mod{3} )⟹2×10n+1≡0(mod3) or
3∣2×10n+13 | 2\times10^n + 13∣2×10n+1.
This maybe proved by induction as well. Thus (2∗10n+1)/3{(2*10^n + 1)/3}(2∗10n+1)/3 is an integer and thus TnT_nTn is a perfect square for all n.
:) 9801,998001,99980001,9999800001,.....
Problem Loading...
Note Loading...
Set Loading...
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
Tn=44444....(ntimes)88888...(n−1times)9
=94×(10n−1)×10n+98×(10n−1−1)×10+9
=91(4×(10n−1)×10n+8(10n−1−1)×+81)
=91(4×102n−4×10n+8×(10n−10)+81)
=91(4×102n−4×10n+8×10n−80+81)
=91(4×102n+4×10n+1)
=91[(2×10n)2+2×(2×10n)+12]
=91(2×10n+1)2
=(32×10n+1)2
Now note
2≡−1(mod3) and
10≡1(mod3)⟹10n≡1(mod3)
⟹2×10n≡−1(mod3)
⟹2×10n+1≡0(mod3) or
3∣2×10n+1.
This maybe proved by induction as well. Thus (2∗10n+1)/3 is an integer and thus Tn is a perfect square for all n.
:) 9801,998001,99980001,9999800001,.....