This note is incomplete
π c a n b e e x p r e s s e d i n m a n y b e a u t i f u l p a t t e r n s a n d w a y s . \huge\pi \ \mathcal{can \ be \ expressed \ in \ many \ beautiful \ patterns \ and \ ways.} π c a n b e e x p r e s s e d i n m a n y b e a u t i f u l p a t t e r n s a n d w a y s .
Before we indulge in the facts, let's munch on some pie. (pun intended)
↓ ↓ ↓ S e e B e l o w ! ↓ ↓ ↓ \small \downarrow\downarrow\downarrow See \ Below! \ \downarrow\downarrow\downarrow ↓ ↓ ↓ S e e B e l o w ! ↓ ↓ ↓
Take The Nilakantha Series and The Gregory-Leibniz Series.
Nilakantha Series:
π = 3 + 4 2 × 3 × 4 − 4 4 × 5 × 6 + 4 6 × 7 × 8 − 4 8 × 9 × 10 ⋯ \displaystyle \pi = 3 + \frac{4}{2 \times 3 \times 4} - \frac{4}{4 \times 5 \times 6} + \frac{4}{6 \times 7 \times 8} - \frac{4}{8 \times 9 \times 10} \cdots π = 3 + 2 × 3 × 4 4 − 4 × 5 × 6 4 + 6 × 7 × 8 4 − 8 × 9 × 1 0 4 ⋯
Gregory-Leibniz Series:
π 4 = ∑ k = 1 ∞ ( − 1 ) k + 1 2 k − 1 = 1 − 1 3 + 1 5 − 1 7 + 1 9 ⋯ \displaystyle \frac{\pi}{4} = \sum_{k=1}^\infty \frac{(-1)^{k+1}}{2k-1} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} \cdots 4 π = k = 1 ∑ ∞ 2 k − 1 ( − 1 ) k + 1 = 1 − 3 1 + 5 1 − 7 1 + 9 1 ⋯
But the Gregory-Leibniz Series takes MORE than 300 terms to be correct to 2 decimal places! \displaystyle \textbf{But the Gregory-Leibniz Series takes MORE than 300 terms to be correct to 2 decimal places!} But the Gregory-Leibniz Series takes MORE than 300 terms to be correct to 2 decimal places! It can be transformed into
π = ∑ k = 1 ∞ 3 k − 1 4 k ζ ( k + 1 ) \displaystyle \pi = \sum_{k=1}^\infty \frac{3^k-1}{4^k} \zeta(k+1) π = k = 1 ∑ ∞ 4 k 3 k − 1 ζ ( k + 1 ) where ζ \displaystyle \zeta ζ is the Riemann Zeta function and so that the error after k k k terms is ≈ ( 3 4 ) k \displaystyle \approx \left(\frac{3}{4}\right)^k ≈ ( 4 3 ) k
There is also Machin's Formula:
1 4 π = 4 tan − 1 ( 1 5 ) − tan − 1 ( 1 239 ) \displaystyle \frac{1}{4} \pi = 4 \tan^{-1} \left(\frac{1}{5}\right) - \tan^{-1} \left(\frac{1}{239}\right) 4 1 π = 4 tan − 1 ( 5 1 ) − tan − 1 ( 2 3 9 1 )
Abraham Sharp gave the infinite sum series,
π = ∑ k = 0 ∞ 2 ( − 1 ) k 3 1 2 − k 2 k + 1 \displaystyle \pi = \sum_{k=0}^\infty \frac{2 (-1)^k 3^{\frac{1}{2}-k}}{2k+1} π = k = 0 ∑ ∞ 2 k + 1 2 ( − 1 ) k 3 2 1 − k
Simple series' of infinite sums:
1 4 π 2 = ∑ k = 1 ∞ [ ( − 1 ) k + 1 4 k − 1 + ( − 1 ) k + 1 4 k − 3 ] = 1 + 1 3 − 1 5 + 1 7 − 1 9 + ⋯ \displaystyle \frac{1}{4} \pi \sqrt{2} = \sum_{k=1}^\infty \left[\frac{(-1)^{k+1}}{4k-1} + \frac{(-1)^{k+1}}{4k-3}\right] = 1 + \frac{1}{3} - \frac{1}{5} + \frac{1}{7} - \frac{1}{9} + \cdots 4 1 π 2 = k = 1 ∑ ∞ [ 4 k − 1 ( − 1 ) k + 1 + 4 k − 3 ( − 1 ) k + 1 ] = 1 + 3 1 − 5 1 + 7 1 − 9 1 + ⋯ ( related to the Gregory-Leibniz series ) \quad\quad\quad\quad\quad\small(\text{related to the Gregory-Leibniz series}) ( related to the Gregory-Leibniz series )
1 4 ( π − 3 ) = ∑ k = 1 ∞ ( − 1 ) k + 1 2 k ( 2 k + 1 ) ( 2 k + 2 ) = 1 2 × 3 × 4 − 1 4 × 5 × 6 + 1 6 × 7 × 8 − ⋯ \displaystyle \frac{1}{4} (\pi-3) = \sum_{k=1}^\infty \frac{(-1)^{k+1}}{2k(2k+1)(2k+2)} = \frac{1}{2 \times 3 \times 4} - \frac{1}{4 \times 5 \times 6} + \frac{1}{6 \times 7 \times 8} - \cdots 4 1 ( π − 3 ) = k = 1 ∑ ∞ 2 k ( 2 k + 1 ) ( 2 k + 2 ) ( − 1 ) k + 1 = 2 × 3 × 4 1 − 4 × 5 × 6 1 + 6 × 7 × 8 1 − ⋯
1 6 π 2 = ∑ k = 1 ∞ 1 k 2 = 1 + 1 4 + 1 9 + 1 16 ⋯ \displaystyle \frac{1}{6} \pi^2 = \sum_{k=1}^\infty \frac{1}{k^2} = 1 + \frac{1}{4} + \frac{1}{9} +\frac{1}{16} \cdots 6 1 π 2 = k = 1 ∑ ∞ k 2 1 = 1 + 4 1 + 9 1 + 1 6 1 ⋯
1 8 π 2 = ∑ k = 1 ∞ 1 ( 2 k − 1 ) 2 = 1 + 1 3 2 + 1 5 2 + 1 7 2 + … \displaystyle \frac{1}{8} \pi^2 = \sum_{k=1}^\infty \frac{1}{(2k-1)^2} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots 8 1 π 2 = k = 1 ∑ ∞ ( 2 k − 1 ) 2 1 = 1 + 3 2 1 + 5 2 1 + 7 2 1 + …
There is also π 4 90 = ζ ( 4 ) \displaystyle \frac{\pi^4}{90} = \zeta(4) 9 0 π 4 = ζ ( 4 )
In 1666 (Newton's miracle year) Newton used a geometric construction to derive the formula
π = 3 4 3 + 24 ∫ 0 1 4 x − x 2 dx = 3 3 4 + 24 ( 1 12 − 1 5 × 2 5 − 1 28 × 2 7 − 1 72 × 2 9 ⋯ ) \displaystyle \pi = \frac{3}{4} \sqrt{3} + 24 \int_{0}^{\frac{1}{4}} \sqrt{x-x^2} \text{dx} = \frac{3 \sqrt{3}}{4} + 24 \left(\frac{1}{12} - \frac{1}{5 \times 2^5} - \frac{1}{28 \times 2^7} - \frac{1}{72 \times 2^9} \cdots \right) π = 4 3 3 + 2 4 ∫ 0 4 1 x − x 2 dx = 4 3 3 + 2 4 ( 1 2 1 − 5 × 2 5 1 − 2 8 × 2 7 1 − 7 2 × 2 9 1 ⋯ )
The coefficients can be found in
I ( x ) = ∫ x − x 2 dx = 1 4 ( 2 x − 1 ) x − x 2 − 1 8 sin − 1 ( 1 − 2 x ) \displaystyle I(x) = \int \sqrt{x-x^2} \text{dx} = \frac{1}{4} (2x-1) \sqrt{x-x^2} - \frac{1}{8} \sin^{-1} (1-2x) I ( x ) = ∫ x − x 2 dx = 4 1 ( 2 x − 1 ) x − x 2 − 8 1 sin − 1 ( 1 − 2 x )
by taking the series expansion of I ( x ) − I ( 0 ) I(x)-I(0) I ( x ) − I ( 0 ) about 0 obtaining
I ( x ) = 2 3 x 3 2 − 1 5 x 3 2 − 1 28 x 7 2 − 1 72 x 9 2 − 5 704 x 11 2 ⋯ I(x) = \dfrac{2}{3} x^{\frac{3}{2}} - \dfrac{1}{5} x^{\frac{3}{2}} - \dfrac{1}{28} x^{\frac{7}{2}} - \dfrac{1}{72} x^{\frac{9}{2}} - \dfrac{5}{704} x^{\frac{11}{2}} \cdots I ( x ) = 3 2 x 2 3 − 5 1 x 2 3 − 2 8 1 x 2 7 − 7 2 1 x 2 9 − 7 0 4 5 x 2 1 1 ⋯
Euler's convergence improvement transformation gives
π 2 = 1 2 ∑ n = 0 ∞ ( n ! ) 2 2 n + 1 ( 2 n + 1 ) ! = ∑ n = 0 ∞ n ! ( 2 n + 1 ) ! ! = 1 + 1 3 + 1 × 2 3 × 5 + 1 × 2 × 3 3 × 5 × 7 + ⋯ = 1 + 1 3 ( 1 + 2 5 ( 1 + 3 7 ( 1 + 4 9 ( 1 + ⋯ ) ) ) ) \displaystyle \frac{\pi}{2} = \frac{1}{2} \sum_{n=0}^\infty \frac{(n!)^2 2^{n+1}}{(2n+1)!} = \sum_{n=0}^\infty \frac{n!}{(2n+1)!!} = 1 + \frac{1}{3} + \frac{1 \times 2}{3 \times 5} + \frac{1 \times 2 \times 3}{3 \times 5 \times 7} + \cdots = 1 + \frac{1}{3}\left(1 + \frac{2}{5}\left(1 + \frac{3}{7}\left(1 + \frac{4}{9}(1 + \cdots )\right)\right)\right) 2 π = 2 1 n = 0 ∑ ∞ ( 2 n + 1 ) ! ( n ! ) 2 2 n + 1 = n = 0 ∑ ∞ ( 2 n + 1 ) ! ! n ! = 1 + 3 1 + 3 × 5 1 × 2 + 3 × 5 × 7 1 × 2 × 3 + ⋯ = 1 + 3 1 ( 1 + 5 2 ( 1 + 7 3 ( 1 + 9 4 ( 1 + ⋯ ) ) ) )
This corresponds to plugging in x = 1 2 \displaystyle x = \frac{1}{\sqrt{2}} x = 2 1 into the power series for the hypergeometric function 2 F 1 ( a , b ; c ; x ) , \displaystyle_2 F_1 (a,b;c;x), 2 F 1 ( a , b ; c ; x ) ,
sin − 1 x 1 − x 2 = ∑ i = 0 ∞ ( 2 x ) 2 i + 1 i ! 2 2 ( 2 i + 1 ) ! = 2 F 1 ( 1 , 1 ; 3 2 ; x 2 ) x \displaystyle \frac{\sin^{-1} x}{\sqrt{1-x^2}} = \sum_{i=0}^\infty \frac{(2x)^{2i+1} i!^2 }{2 (2i+1)!} = _2 F_1 (1,1;\frac{3}{2};x^2)x 1 − x 2 sin − 1 x = i = 0 ∑ ∞ 2 ( 2 i + 1 ) ! ( 2 x ) 2 i + 1 i ! 2 = 2 F 1 ( 1 , 1 ; 2 3 ; x 2 ) x
Despite the convergence improvement, series ( ⋄ ) \left(\displaystyle \diamond\right) ( ⋄ ) converges at only one bit/term. At the cost of a square root, Gosper has noted that x = 1 2 \displaystyle x = \frac{1}{2} x = 2 1 gives 2 bits/term,
1 9 3 π = 1 2 ∑ i = 0 ∞ ( i ! ) 2 ( 2 i + 1 ) ! \displaystyle \frac{1}{9} \sqrt{3} \pi = \frac{1}{2} \sum_{i=0}^\infty \frac{(i!)^2}{(2i+1)!} 9 1 3 π = 2 1 i = 0 ∑ ∞ ( 2 i + 1 ) ! ( i ! ) 2
and x = sin ( π 10 ) \displaystyle x = \sin\left(\frac{\pi}{10}\right) x = sin ( 1 0 π ) gives almost 3.39 bits/term
π 5 + ϕ + 2 = 1 2 ∑ i = 0 ∞ ( i ! ) 2 ϕ 2 i + 1 ( 2 i + 1 ) ! \displaystyle \frac{\pi}{5 + \sqrt{\phi+2}} = \frac{1}{2} \sum_{i=0}^\infty \frac{(i!)^2}{\phi^{2i+1} (2i+1)!} 5 + ϕ + 2 π = 2 1 i = 0 ∑ ∞ ϕ 2 i + 1 ( 2 i + 1 ) ! ( i ! ) 2
where ϕ \displaystyle\phi ϕ is the golden ratio (not Euler's Totient function). Gosper also obtained
π = 3 + 1 60 ( 8 + 2 × 3 7 × 8 × 3 ( 13 + 3 × 5 10 × 11 × 3 ( 18 + 4 × 7 13 × 14 × 3 ( 23 + ⋯ ) ) ) ) \displaystyle \pi = 3 + \frac{1}{60}\left(8 + \frac{2 \times 3}{7 \times 8 \times 3}\left(13 + \frac{3 \times 5}{10 \times 11 \times 3}\left(18 + \frac{4 \times 7}{13 \times 14 \times 3}(23 + \cdots)\right)\right)\right) π = 3 + 6 0 1 ( 8 + 7 × 8 × 3 2 × 3 ( 1 3 + 1 0 × 1 1 × 3 3 × 5 ( 1 8 + 1 3 × 1 4 × 3 4 × 7 ( 2 3 + ⋯ ) ) ) )
A spigot algorithm for π \displaystyle \pi π is given by Rabinowitz and Wagon.
More amazingly still, a closed-form expression giving a digit-extraction algorithm which produces digits of π \displaystyle\pi π (or π 2 ) \displaystyle \pi^2 ) π 2 ) in base-16 was discovered by Bailey.
π = ∑ n = 0 ∞ ( 4 8 n + 1 − 2 8 n + 4 − 1 8 n + 5 − 1 8 n + 6 ) ( 1 16 ) n \displaystyle \pi = \sum_{n=0}^\infty \left( \frac{4}{8n+1} - \frac{2}{8n+4} - \frac{1}{8n+5} - \frac{1}{8n+6}\right) \left(\frac{1}{16}\right)^n π = n = 0 ∑ ∞ ( 8 n + 1 4 − 8 n + 4 2 − 8 n + 5 1 − 8 n + 6 1 ) ( 1 6 1 ) n
This formula, known as the BBP formula, was discovered using the PSLQ algorithm and is equivalent to
π = ∫ 0 1 16 y − 16 y 4 − 2 y 3 + 4 y − 4 d y \displaystyle \pi = \int_{0}^{1} \frac{16y - 16}{y^4 - 2y^3 + 4y - 4} \ d \ y π = ∫ 0 1 y 4 − 2 y 3 + 4 y − 4 1 6 y − 1 6 d y
There is a series of BBP-type formulas for π \displaystyle\pi π in powers of ( − 1 ) k \displaystyle (-1)^k ( − 1 ) k , the first few independent formulas of which are
π = 4 ∑ k = 0 ∞ ( − 1 ) k 2 k + 1 = 3 ∑ k = 0 ∞ ( − 1 ) k [ 1 6 k + 1 + 1 6 k + 5 ] = 4 ∑ k = 0 ∞ ( − 1 ) k [ 1 10 k + 1 − 1 10 k + 3 + 1 10 k + 5 − 1 10 k + 7 + 1 10 k + 9 ] = ∑ k = 0 ∞ ( − 1 ) k [ 3 14 k + 1 − 3 14 k + 3 + 3 14 k + 5 − 4 14 k + 7 + 4 14 k + 9 − 4 14 k + 11 + 4 14 k + 13 ] = ∑ k = 0 ∞ ( − 1 ) k [ 2 18 k + 1 + 3 18 k + 3 + 2 18 k + 5 − 2 18 k + 7 − 2 18 k + 11 + 2 18 k + 13 + 3 18 k + 15 + 2 18 k + 17 ] = ∑ k = 0 ∞ ( − 1 ) k [ 3 22 k + 1 − 3 22 k + 3 + 3 22 k + 5 − 3 22 k + 7 + 3 22 k + 9 + 8 22 k + 11 + 3 22 k + 13 − 3 22 k + 15 + 3 22 k + 17 − 3 22 k + 19 + 1 22 k + 21 ] \begin{aligned} \pi & = 4 \sum_{k=0}^\infty \frac{(-1)^k}{2k+1} \\ &= 3 \sum_{k=0}^\infty (-1)^k \left[\frac{1}{6k+1} + \frac{1}{6k+5} \right] \\ &= 4 \sum_{k=0}^\infty (-1)^k \left[\frac{1}{10k+1} - \frac{1}{10k+3} + \frac{1}{10k+5} - \frac{1}{10k+7} + \frac{1}{10k+9}\right] \\ &= \sum_{k=0}^\infty (-1)^k \left[\frac{3}{14k+1} - \frac{3}{14k+3} + \frac{3}{14k+5} - \frac{4}{14k+7} + \frac{4}{14k+9} - \frac{4}{14k+11} + \frac{4}{14k+13}\right] \\ &= \sum_{k=0}^\infty (-1)^k \left[\frac{2}{18k+1}+\frac{3}{18k+3}+\frac{2}{18k+5}-\frac{2}{18k+7}-\frac{2}{18k+11}+\frac{2}{18k+13}+\frac{3}{18k+15}+\frac{2}{18k+17}\right] \\ &= \sum_{k=0}^\infty (-1)^k \left[\frac{3}{22k+1}-\frac{3}{22k+3}+\frac{3}{22k+5}-\frac{3}{22k+7}+\frac{3}{22k+9}+\frac{8}{22k+11}+\frac{3}{22k+13}-\frac{3}{22k+15}+\frac{3}{22k+17}-\frac{3}{22k+19}+\frac{1}{22k+21}\right]\end{aligned} π = 4 k = 0 ∑ ∞ 2 k + 1 ( − 1 ) k = 3 k = 0 ∑ ∞ ( − 1 ) k [ 6 k + 1 1 + 6 k + 5 1 ] = 4 k = 0 ∑ ∞ ( − 1 ) k [ 1 0 k + 1 1 − 1 0 k + 3 1 + 1 0 k + 5 1 − 1 0 k + 7 1 + 1 0 k + 9 1 ] = k = 0 ∑ ∞ ( − 1 ) k [ 1 4 k + 1 3 − 1 4 k + 3 3 + 1 4 k + 5 3 − 1 4 k + 7 4 + 1 4 k + 9 4 − 1 4 k + 1 1 4 + 1 4 k + 1 3 4 ] = k = 0 ∑ ∞ ( − 1 ) k [ 1 8 k + 1 2 + 1 8 k + 3 3 + 1 8 k + 5 2 − 1 8 k + 7 2 − 1 8 k + 1 1 2 + 1 8 k + 1 3 2 + 1 8 k + 1 5 3 + 1 8 k + 1 7 2 ] = k = 0 ∑ ∞ ( − 1 ) k [ 2 2 k + 1 3 − 2 2 k + 3 3 + 2 2 k + 5 3 − 2 2 k + 7 3 + 2 2 k + 9 3 + 2 2 k + 1 1 8 + 2 2 k + 1 3 3 − 2 2 k + 1 5 3 + 2 2 k + 1 7 3 − 2 2 k + 1 9 3 + 2 2 k + 2 1 1 ]
Similarly, there are a series of BBP-type formulas for π \pi π in powers of 2 k 2^k 2 k , the first few independent formulas of which are
π = ∑ k = 0 ∞ 1 1 6 k [ 4 8 k + 1 − 2 8 k + 4 − 1 8 k + 5 − 1 8 k + 6 ] = 1 2 ∑ k = 0 ∞ 1 1 6 k [ 8 8 k + 2 + 4 8 k + 3 + 4 8 k + 4 − 1 8 k + 7 ] = 1 16 ∑ k = 0 ∞ 1 25 6 k [ 64 16 k + 1 − 32 16 k + 4 − 16 16 k + 5 − 16 16 k + 6 + 4 16 k + 9 − 2 16 k + 12 − 1 16 k + 13 − 1 16 k + 14 ] = 1 32 ∑ k = 0 ∞ 1 25 6 k [ 128 1 k + 2 + 64 16 k + 3 + 64 16 k + 4 − 16 16 k + 7 + 8 16 k + 10 + 4 16 k + 11 + 4 16 k + 12 − 1 16 k + 15 ] = 1 32 ∑ k = 0 ∞ 1 409 6 k [ 256 24 k + 2 + 192 24 k + 3 − 256 24 k + 4 − 96 24 k + 6 − 96 24 k + 8 + 16 24 k + 10 − 4 24 k + 12 − 3 24 k + 15 − 6 24 k + 16 − 2 24 k + 18 − 1 24 k + 20 ] = 1 64 ∑ k = 0 ∞ 1 409 6 k [ 256 24 k + 1 + 256 24 k + 2 − 384 24 k + 3 − 256 24 k + 4 − 64 24 k + 5 + 96 24 k + 8 + 64 24 k + 9 + 16 24 k + 10 + 8 24 k + 12 − 4 24 k + 13 + 6 24 k + 15 + 6 24 k + 16 + 1 24 k + 17 + 1 24 k + 18 − 1 24 k + 20 − 1 24 k + 20 ] = 1 96 ∑ k = 0 ∞ 1 409 6 k [ 256 24 k + 2 + 64 24 k + 3 + 128 24 k + 5 + 352 24 k + 6 + 64 24 k + 7 + 288 24 k + 8 + 128 24 k + 9 + 80 24 k + 10 + 20 24 k + 12 − 16 24 k + 14 − 1 24 k + 15 + 6 24 k + 16 − 2 23 k + 17 − 1 24 k + 19 + 1 24 k + 20 − 2 24 k + 21 ] = 1 96 ∑ k = 0 ∞ 1 409 6 k [ 256 24 k + 1 + 320 24 k + 3 + 256 24 k + 4 − 192 24 k + 5 − 224 24 k + 6 − 64 24 k + 7 − 192 24 k + 8 − 64 24 k + 9 − 64 24 k + 10 − 28 24 k + 12 − 4 24 k + 13 − 5 24 k + 15 + 3 24 k + 17 + 1 24 k + 18 + 1 24 k + 19 + 1 24 k + 21 − 1 24 k + 22 ] = 1 96 ∑ k = 0 ∞ 1 409 6 k [ 512 24 k + 1 − 256 24 k + 2 + 64 24 k + 3 − 512 24 k + 4 − 32 24 k + 6 + 64 24 k + 7 + 96 24 k + 8 + 64 24 k + 9 + 48 24 k + 10 − 12 24 k + 12 − 8 24 k + 13 − 16 24 k + 14 − 1 24 k + 15 − 6 24 k + 16 − 2 24 k + 18 − 1 24 k + 19 − 1 24 k + 20 − 1 24 k + 21 ] = 1 4096 ∑ k = 0 ∞ 1 6553 6 k [ 16384 32 k + 1 − 8192 32 k + 4 − 4096 32 k + 5 − 4096 32 k + 6 + 1024 32 k + 9 − 512 32 k + 12 − 256 32 k + 13 − 256 32 k + 14 + 64 32 k + 17 − 32 32 k + 20 − 16 32 k + 21 − 16 32 k + 22 + 4 32 k + 25 − 2 32 k + 28 − 1 32 k + 29 − 1 32 k + 30 ] \begin{aligned} \pi & = \sum_{k=0}^\infty \frac{1}{16^k} \left[\frac{4}{8k+1} - \frac{2}{8k+4} - \frac{1}{8k+5} - \frac{1}{8k+6}\right] \\ &= \frac{1}{2} \sum_{k=0}^\infty \frac{1}{16^k} \left[\frac{8}{8k+2} + \frac{4}{8k+3} + \frac{4}{8k+4} - \frac{1}{8k+7} \right] \\ &= \frac{1}{16} \sum_{k=0}^\infty \frac{1}{256^k} \left[\frac{64}{16k+1} - \frac{32}{16k+4} - \frac{16}{16k+5} - \frac{16}{16k+6} + \frac{4}{16k+9} - \frac{2}{16k+12} - \frac{1}{16k+13} - \frac{1}{16k+14} \right] \\ &= \frac{1}{32} \sum_{k=0}^\infty \frac{1}{256^k} \left[\frac{128}{1k+2} + \frac{64}{16k+3}+\frac{64}{16k+4}-\frac{16}{16k+7} + \frac{8}{16k+10}+\frac{4}{16k+11}+\frac{4}{16k+12}-\frac{1}{16k+15}\right] \\ &= \frac{1}{32} \sum_{k=0}^\infty \frac{1}{4096^k} \left[\frac{256}{24k+2}+\frac{192}{24k+3}-\frac{256}{24k+4}-\frac{96}{24k+6}-\frac{96}{24k+8}+\frac{16}{24k+10}-\frac{4}{24k+12}-\frac{3}{24k+15}-\frac{6}{24k+16}-\frac{2}{24k+18}-\frac{1}{24k+20}\right] \\ &= \frac{1}{64} \sum_{k=0}^\infty \frac{1}{4096^k} \left[\frac{256}{24k+1}+\frac{256}{24k+2}-\frac{384}{24k+3}-\frac{256}{24k+4}-\frac{64}{24k+5}+\frac{96}{24k+8}+\frac{64}{24k+9}+\frac{16}{24k+10}+\frac{8}{24k+12}-\frac{4}{24k+13}+\frac{6}{24k+15}+\frac{6}{24k+16}+\frac{1}{24k+17}+\frac{1}{24k+18}-\frac{1}{24k+20}-\frac{1}{24k+20}\right] \\ &= \frac{1}{96} \sum_{k=0}^\infty \frac{1}{4096^k}\left[\frac{256}{24k+2}+\frac{64}{24k+3}+\frac{128}{24k+5}+\frac{352}{24k+6}+\frac{64}{24k+7}+\frac{288}{24k+8}+\frac{128}{24k+9}+\frac{80}{24k+10}+\frac{20}{24k+12}-\frac{16}{24k+14}-\frac{1}{24k+15}+\frac{6}{24k+16}-\frac{2}{23k+17}-\frac{1}{24k+19}+\frac{1}{24k+20}-\frac{2}{24k+21}\right] \\ &= \frac{1}{96} \sum_{k=0}^\infty \frac{1}{4096^k} \left[\frac{256}{24k+1} + \frac{320}{24k+3} + \frac{256}{24k+4} - \frac{192}{24k+5}-\frac{224}{24k+6}-\frac{64}{24k+7}-\frac{192}{24k+8}-\frac{64}{24k+9}-\frac{64}{24k+10}-\frac{28}{24k+12}-\frac{4}{24k+13}-\frac{5}{24k+15}+\frac{3}{24k+17}+\frac{1}{24k+18}+\frac{1}{24k+19}+\frac{1}{24k+21}-\frac{1}{24k+22}\right] \\ & = \frac{1}{96} \sum_{k=0}^\infty \frac{1}{4096^k} \left[\frac{512}{24k+1}-\frac{256}{24k+2}+\frac{64}{24k+3}-\frac{512}{24k+4}-\frac{32}{24k+6}+\frac{64}{24k+7}+\frac{96}{24k+8}+\frac{64}{24k+9}+\frac{48}{24k+10}-\frac{12}{24k+12}-\frac{8}{24k+13}-\frac{16}{24k+14}-\frac{1}{24k+15}-\frac{6}{24k+16}-\frac{2}{24k+18}-\frac{1}{24k+19}-\frac{1}{24k+20}-\frac{1}{24k+21}\right] \\ &=\frac{1}{4096} \sum_{k=0}^\infty \frac{1}{65536^k} \left[\frac{16384}{32k+1}-\frac{8192}{32k+4}-\frac{4096}{32k+5}-\frac{4096}{32k+6}+\frac{1024}{32k+9}-\frac{512}{32k+12}-\frac{256}{32k+13}-\frac{256}{32k+14}+\frac{64}{32k+17}-\frac{32}{32k+20}-\frac{16}{32k+21}-\frac{16}{32k+22}+\frac{4}{32k+25}-\frac{2}{32k+28}-\frac{1}{32k+29}-\frac{1}{32k+30}\right] \end{aligned} π = k = 0 ∑ ∞ 1 6 k 1 [ 8 k + 1 4 − 8 k + 4 2 − 8 k + 5 1 − 8 k + 6 1 ] = 2 1 k = 0 ∑ ∞ 1 6 k 1 [ 8 k + 2 8 + 8 k + 3 4 + 8 k + 4 4 − 8 k + 7 1 ] = 1 6 1 k = 0 ∑ ∞ 2 5 6 k 1 [ 1 6 k + 1 6 4 − 1 6 k + 4 3 2 − 1 6 k + 5 1 6 − 1 6 k + 6 1 6 + 1 6 k + 9 4 − 1 6 k + 1 2 2 − 1 6 k + 1 3 1 − 1 6 k + 1 4 1 ] = 3 2 1 k = 0 ∑ ∞ 2 5 6 k 1 [ 1 k + 2 1 2 8 + 1 6 k + 3 6 4 + 1 6 k + 4 6 4 − 1 6 k + 7 1 6 + 1 6 k + 1 0 8 + 1 6 k + 1 1 4 + 1 6 k + 1 2 4 − 1 6 k + 1 5 1 ] = 3 2 1 k = 0 ∑ ∞ 4 0 9 6 k 1 [ 2 4 k + 2 2 5 6 + 2 4 k + 3 1 9 2 − 2 4 k + 4 2 5 6 − 2 4 k + 6 9 6 − 2 4 k + 8 9 6 + 2 4 k + 1 0 1 6 − 2 4 k + 1 2 4 − 2 4 k + 1 5 3 − 2 4 k + 1 6 6 − 2 4 k + 1 8 2 − 2 4 k + 2 0 1 ] = 6 4 1 k = 0 ∑ ∞ 4 0 9 6 k 1 [ 2 4 k + 1 2 5 6 + 2 4 k + 2 2 5 6 − 2 4 k + 3 3 8 4 − 2 4 k + 4 2 5 6 − 2 4 k + 5 6 4 + 2 4 k + 8 9 6 + 2 4 k + 9 6 4 + 2 4 k + 1 0 1 6 + 2 4 k + 1 2 8 − 2 4 k + 1 3 4 + 2 4 k + 1 5 6 + 2 4 k + 1 6 6 + 2 4 k + 1 7 1 + 2 4 k + 1 8 1 − 2 4 k + 2 0 1 − 2 4 k + 2 0 1 ] = 9 6 1 k = 0 ∑ ∞ 4 0 9 6 k 1 [ 2 4 k + 2 2 5 6 + 2 4 k + 3 6 4 + 2 4 k + 5 1 2 8 + 2 4 k + 6 3 5 2 + 2 4 k + 7 6 4 + 2 4 k + 8 2 8 8 + 2 4 k + 9 1 2 8 + 2 4 k + 1 0 8 0 + 2 4 k + 1 2 2 0 − 2 4 k + 1 4 1 6 − 2 4 k + 1 5 1 + 2 4 k + 1 6 6 − 2 3 k + 1 7 2 − 2 4 k + 1 9 1 + 2 4 k + 2 0 1 − 2 4 k + 2 1 2 ] = 9 6 1 k = 0 ∑ ∞ 4 0 9 6 k 1 [ 2 4 k + 1 2 5 6 + 2 4 k + 3 3 2 0 + 2 4 k + 4 2 5 6 − 2 4 k + 5 1 9 2 − 2 4 k + 6 2 2 4 − 2 4 k + 7 6 4 − 2 4 k + 8 1 9 2 − 2 4 k + 9 6 4 − 2 4 k + 1 0 6 4 − 2 4 k + 1 2 2 8 − 2 4 k + 1 3 4 − 2 4 k + 1 5 5 + 2 4 k + 1 7 3 + 2 4 k + 1 8 1 + 2 4 k + 1 9 1 + 2 4 k + 2 1 1 − 2 4 k + 2 2 1 ] = 9 6 1 k = 0 ∑ ∞ 4 0 9 6 k 1 [ 2 4 k + 1 5 1 2 − 2 4 k + 2 2 5 6 + 2 4 k + 3 6 4 − 2 4 k + 4 5 1 2 − 2 4 k + 6 3 2 + 2 4 k + 7 6 4 + 2 4 k + 8 9 6 + 2 4 k + 9 6 4 + 2 4 k + 1 0 4 8 − 2 4 k + 1 2 1 2 − 2 4 k + 1 3 8 − 2 4 k + 1 4 1 6 − 2 4 k + 1 5 1 − 2 4 k + 1 6 6 − 2 4 k + 1 8 2 − 2 4 k + 1 9 1 − 2 4 k + 2 0 1 − 2 4 k + 2 1 1 ] = 4 0 9 6 1 k = 0 ∑ ∞ 6 5 5 3 6 k 1 [ 3 2 k + 1 1 6 3 8 4 − 3 2 k + 4 8 1 9 2 − 3 2 k + 5 4 0 9 6 − 3 2 k + 6 4 0 9 6 + 3 2 k + 9 1 0 2 4 − 3 2 k + 1 2 5 1 2 − 3 2 k + 1 3 2 5 6 − 3 2 k + 1 4 2 5 6 + 3 2 k + 1 7 6 4 − 3 2 k + 2 0 3 2 − 3 2 k + 2 1 1 6 − 3 2 k + 2 2 1 6 + 3 2 k + 2 5 4 − 3 2 k + 2 8 2 − 3 2 k + 2 9 1 − 3 2 k + 3 0 1 ]
F. Bellard found the rapidly converging BBP-type formula
π = 1 2 6 ∑ n = 0 ∞ ( − 1 ) n 2 10 n ( − 2 5 4 n + 1 − 1 4 n + 3 + 2 8 10 n + 1 − 2 6 10 n + 3 − 2 2 10 n + 5 − 2 2 10 n + 7 + 1 10 n + 9 ) \pi = \frac{1}{2^6} \sum_{n=0}^\infty \frac{(-1)^n}{2^{10n}} \left(-\frac{2^5}{4n+1}-\frac{1}{4n+3}+\frac{2^8}{10n+1}-\frac{2^6}{10n+3}-\frac{2^2}{10n+5}-\frac{2^2}{10n+7}+\frac{1}{10n+9}\right) π = 2 6 1 n = 0 ∑ ∞ 2 1 0 n ( − 1 ) n ( − 4 n + 1 2 5 − 4 n + 3 1 + 1 0 n + 1 2 8 − 1 0 n + 3 2 6 − 1 0 n + 5 2 2 − 1 0 n + 7 2 2 + 1 0 n + 9 1 )
A related integral is
π = 22 7 − ∫ 0 1 x 4 ( 1 − x ) 4 1 + x 2 dx \pi = \frac{22}{7} - \int_{0}^{1} \frac{x^4 (1-x)^4}{1+x^2} \text{dx} π = 7 2 2 − ∫ 0 1 1 + x 2 x 4 ( 1 − x ) 4 dx
Boros and Moll state that it is not clear if there exists a natural choice of a rational polynomial whose integral between 0 and 1 produces π − 333 106 \pi-\dfrac{333}{106} π − 1 0 6 3 3 3 , where 333 106 \dfrac{333}{106} 1 0 6 3 3 3 is the next convergent. However, an integral exists for the fourth convergent, namely
π = 355 113 − 1 3164 ∫ 0 1 x 8 ( 1 − x ) 8 ( 25 + 816 x 2 ) 1 + x 2 dx \pi=\dfrac{355}{113} - \frac{1}{3164} \int_{0}^{1} \frac{x^8 (1-x)^8 (25 + 816x^2)}{1+x^2} \text{dx} π = 1 1 3 3 5 5 − 3 1 6 4 1 ∫ 0 1 1 + x 2 x 8 ( 1 − x ) 8 ( 2 5 + 8 1 6 x 2 ) dx
Backhouse used the identity
l m n = ∫ 0 1 x m ( 1 − x ) n 1 + x 2 dx = 2 − ( m + n + 1 ) π Γ ( m + 1 ) Γ ( n + 1 ) × 3 F 2 ( 1 , m + 1 2 , m + 2 2 ; m + n + 2 2 , m + n + 3 2 ; − 1 ) = a + b π + c ln 2 \begin{aligned} l_{mn} & = \int_{0}^{1} \frac{x^m (1-x)^n}{1+x^2} \text{dx} \\ &= 2^{-(m+n+1)} \sqrt{\pi} \Gamma (m+1) \Gamma (n+1) \times _3 F_2 \left(1,\frac{m+1}{2},\frac{m+2}{2}; \frac{m+n+2}{2},\frac{m+n+3}{2};-1\right) \\ &=a + b\pi +c \ln 2 \end{aligned} l m n = ∫ 0 1 1 + x 2 x m ( 1 − x ) n dx = 2 − ( m + n + 1 ) π Γ ( m + 1 ) Γ ( n + 1 ) × 3 F 2 ( 1 , 2 m + 1 , 2 m + 2 ; 2 m + n + 2 , 2 m + n + 3 ; − 1 ) = a + b π + c ln 2
for positive integer m m m and n n n and where a , b a,b a , b and c c c are rational constant to generate a number of formulas for π \pi π . In particular, if 2 m − n ≡ 0 ( m o d 4 ) 2m-n \equiv 0 \pmod 4 2 m − n ≡ 0 ( m o d 4 ) then c = 0 c=0 c = 0
A similar formula was subsequently discovered by Ferguson, leading to a two-dimensional lattice of such formulas which can be generated by these two formulas given by
π = ∑ k = 0 ∞ ( 4 + 8 r 8 k + 1 − 8 r 8 k + 2 − 4 r 8 k + 3 − 2 + 8 r 8 k + 4 − 1 + 2 r 8 k + 5 − 1 + 2 r 8 k + 6 + r 8 k + 7 ) ( 1 16 ) k \pi = \sum_{k=0}^{\infty} \left(\frac{4+8r}{8k+1}-\frac{8r}{8k+2}-\frac{4r}{8k+3}-\frac{2+8r}{8k+4}-\frac{1+2r}{8k+5}-\frac{1+2r}{8k+6}+\frac{r}{8k+7} \right)\left(\frac{1}{16}\right)^k π = k = 0 ∑ ∞ ( 8 k + 1 4 + 8 r − 8 k + 2 8 r − 8 k + 3 4 r − 8 k + 4 2 + 8 r − 8 k + 5 1 + 2 r − 8 k + 6 1 + 2 r + 8 k + 7 r ) ( 1 6 1 ) k
The Wallis Product is another magnificent way of expressing π \pi π :
∏ n = 1 ∞ ( 2 n 2 n − 1 × 2 n 2 n + 1 ) = 2 1 × 2 3 × 4 3 × 4 5 × 6 5 × 6 7 × 8 7 × 8 9 ⋯ = π 2 \displaystyle \prod_{n=1}^\infty \left(\frac{2n}{2n-1} \times \frac{2n}{2n+1}\right) = \frac{2}{1} \times \frac{2}{3} \times \frac{4}{3} \times \frac{4}{5} \times \frac{6}{5} \times \frac{6}{7} \times \frac{8}{7} \times \frac{8}{9} \cdots = \frac{\pi}{2} n = 1 ∏ ∞ ( 2 n − 1 2 n × 2 n + 1 2 n ) = 1 2 × 3 2 × 3 4 × 5 4 × 5 6 × 7 6 × 7 8 × 9 8 ⋯ = 2 π
PROOF :
1)Euler's infinite product for the sine function
sin x x = ∏ n = 1 ∞ ( 1 − x 2 n 2 π 2 ) \frac{\sin x}{x} = \prod_{n=1}^\infty \left(1-\frac{x^2}{n^2 \pi^2}\right) x sin x = n = 1 ∏ ∞ ( 1 − n 2 π 2 x 2 )
Let x = π 2 \displaystyle x = \frac{\pi}{2} x = 2 π
⟶ 2 π = ∏ n = 1 ∞ ( 1 − 1 4 n 2 ) \longrightarrow \frac{2}{\pi} = \prod_{n=1}^\infty \left(1-\frac{1}{4n^2}\right)\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad ⟶ π 2 = n = 1 ∏ ∞ ( 1 − 4 n 2 1 )
⟶ π 2 = ∏ n = 1 ∞ ( 4 n 2 4 n 2 − 1 ) = ∏ n = 1 ∞ ( 2 n 2 n − 1 × 2 n 2 n + 1 ) = 2 1 × 2 3 × 4 3 × 4 5 × 6 5 × 6 7 × 8 7 × 8 9 ⋯ \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\longrightarrow \frac{\pi}{2} = \prod_{n=1}^\infty \left(\frac{4n^2}{4n^2-1}\right) = \prod_{n=1}^\infty \left(\frac{2n}{2n-1} \times \frac{2n}{2n+1}\right) = \frac{2}{1} \times \frac{2}{3} \times \frac{4}{3} \times \frac{4}{5} \times \frac{6}{5} \times \frac{6}{7} \times \frac{8}{7} \times \frac{8}{9} \cdots ⟶ 2 π = n = 1 ∏ ∞ ( 4 n 2 − 1 4 n 2 ) = n = 1 ∏ ∞ ( 2 n − 1 2 n × 2 n + 1 2 n ) = 1 2 × 3 2 × 3 4 × 5 4 × 5 6 × 7 6 × 7 8 × 9 8 ⋯
2)Proof using Integration
Let:
I ( n ) = ∫ 0 π sin n x d x \displaystyle I(n) = \int_{0}^{\pi} \sin^n x \ dx I ( n ) = ∫ 0 π sin n x d x
(a form of Wallis’ Integrals) \small \text{(a form of Wallis' Integrals)} (a form of Wallis’ Integrals)
Integrate by parts:
u = sin n − 1 x \quad\quad u=\sin^{n-1} x u = sin n − 1 x
⇛ d u = ( n − 1 ) sin n − 2 x cos x d x \Rrightarrow du=(n-1) \sin^{n-2} x \ \cos x \ dx ⇛ d u = ( n − 1 ) sin n − 2 x cos x d x
d v = sin x d x \quad dv = \sin x \ dx d v = sin x d x
⇛ v = − cos x \Rrightarrow v = - \cos \ x ⇛ v = − cos x
⇛ I ( n ) = ∫ 0 π − sin n − 1 x cos x ∣ 0 π \displaystyle \Rrightarrow I(n) = \int_{0}^{\pi} - \sin^{n-1} x \cos x |_{0}^{\pi} ⇛ I ( n ) = ∫ 0 π − sin n − 1 x cos x ∣ 0 π
There is also a continued fraction form : π = 4 1 + 1 2 2 + 3 2 2 + 5 2 2 + ⋱ \pi=\cfrac{4}{1+\cfrac{1^2}{2+\cfrac{3^2}{2+\cfrac{5^2}{2+\ddots}}}} π = 1 + 2 + 2 + 2 + ⋱ 5 2 3 2 1 2 4
There is also a curious identity where 314 ≡ 159 + 265 ( m o d 10 ) 314 \equiv 159 + 265 \pmod{10} 3 1 4 ≡ 1 5 9 + 2 6 5 ( m o d 1 0 ) involving the first 9 9 9 digits of π \pi π
I am going to update this in the future and in the meantime, we can comment about the magical number, π \pi π
Watch Out! There is also Golden ratio in another note!
Sources: Mathworld Wolfram and Wikipedia
Help from Members: Agnishom Chattopadhyay, X X, Andrei Li
This note is incomplete
There is also an amazing π \pi π song out there!
#Algebra
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
You can add 90π4=ζ(4) also
Log in to reply
Will do!
Thank you for contributing
Very beautiful indeed. Great thanks to you Farhat; especially if you are in grade 4! :D
Your LaTeX went wrong:
\displaystyle \rightarrow I(n) = \int_{0}^{\pi} - \sin^{n-1} x \cos x |_{0}^{\pi}
.And we cannot see your last line for BBP-type formulas.
Log in to reply
I know that. And tHank you
Nice!
There are also the continued fractions, one of them being: \pi=\frac{4}{1+\frac{1^2}{2+\frac{2+\frac{3^2}{2+\frac{5^2}{2+...}}}}
Log in to reply
\pi=\cfrac{4}{1+\cfrac{1^2}{2+\cfrac{2+\cfrac{3^2}{2+\cfrac{5^2}{2+\ddots}}}}
Log in to reply
Strangely enough, my computer refuses to accept the continued fraction LaTeX...
Log in to reply
Log in to reply
π=1+2+2+2+⋯5232124
Thank you for contributing
X X, where is your comment?
Log in to reply
Sorry, I didn't notice you add that to the above, so I deleted my coment.
Log in to reply
Oh!
Can you help align my equal signs for the BBP-type formulas
Log in to reply
Log in to reply
Log in to reply
π=4k=0∑∞2k+1(−1)k=3k=0∑∞(−1)k[6k+11+6k+51]=4k=0∑∞(−1)k[10k+11−10k+31+10k+51−10k+71+10k+91]=k=0∑∞(−1)k[14k+13−14k+33+14k+53−14k+74+14k+94−14k+114+14k+134]=k=0∑∞(−1)k[18k+12+18k+33+18k+52−18k+72−18k+112+18k+132+18k+153+18k+172]
Log in to reply
Log in to reply
\text{\begin{aligned} \pi &= 4 \sum_{k=0}^\infty \frac{(-1)^k}{2k+1} \\ &= 3 \sum_{k=0}^\infty (-1)^k \left[\frac{1}{6k+1} + \frac{1}{6k+5} \right] \\ &= 4 \sum_{k=0}^\infty (-1)^k \left[\frac{1}{10k+1} - \frac{1}{10k+3} + \frac{1}{10k+5} - \frac{1}{10k+7} + \frac{1}{10k+9}\right] \\ &= \sum_{k=0}^\infty (-1)^k \left[\frac{3}{14k+1} - \frac{3}{14k+3} + \frac{3}{14k+5} - \frac{4}{14k+7} + \frac{4}{14k+9} - \frac{4}{14k+11} + \frac{4}{14k+13}\right] \\ &= \sum_{k=0}^\infty (-1)^k \left[\frac{2}{18k+1}+\frac{3}{18k+3}+\frac{2}{18k+5}-\frac{2}{18k+7}-\frac{2}{18k+11}+\frac{2}{18k+13}+\frac{3}{18k+15}+\frac{2}{18k+17}\right] \end{aligned} }
Log in to reply
\text{\[ }\) one, and remember the sum, the _ is missing.
Add theLog in to reply
Log in to reply
Log in to reply
Log in to reply
@Agnishom Chattopadhyay, How to input the greater than symbol?
Log in to reply
Umm, you press the relevant key on your keyboard, I guess?
Log in to reply
OHHHH! Now I get It!
Log in to reply
\geq
command?Log in to reply
@Agnishom Chattopadhyay, I saw an 'algebra' problem named 'hej' that is not written in english
Log in to reply
Mohammad Farhan, can you tell me the latex code of how you got the matter completely in a box type manner from "There is a series of BBP-type formulas" and also at some other places.
I know that we can keep " > " symbol to achieve it but it works oly for a continuous string without any break.
Log in to reply
My name is Farhat. You just simply add an another > below it without any break. For example,
>Stuff
>stuff
appears as
Log in to reply
\begin{align} l{mn} & = \int{0}^{1} \frac{x^m (1-x)^n}{1+x^2} \text{dx} \ &= 2^{-(m+n+1) \sqrt{\pi} \Gamma (m+1) \Gamma (n+1) \times 3 F2 \left(1,\frac{m+1}{2},\frac{m+2}{2}; \frac{m+n+2}{2},\frac{m+n+3}{2};-1\right) \ &=a + b\pi +c \ln 2 \end{align}
why is this wrong?
(I took out the start and end brackets for you to inspect.)
Log in to reply
But I didn't notice anything wrong with the Backhouse identity.
Log in to reply
I already realised where the mistake was
Add this series too which I found it, n=1∑∞Γ(n−1)Γ(n−1/2)Γ(1/2+1)=π