Please I need help in that limit proof?

Please can anybody help me in proving this limit identity? limxaxnanxmam=nm(a)nm \large \lim_{x \to a}{\frac{x^n - a^n}{x^m - a^m}} = \frac{n}{m}(a)^{n - m}

#Calculus #Limits

Note by Mohamed Ahmed Abd El-Fattah
5 years, 10 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Note xkakx^k-a^k factors as (xa)i=1kxkiai1\displaystyle(x-a)\sum_{i=1}^kx^{k-i}a^{i-1}.

Then limxaxnanxmam=limxa(xa)i=1nxniai1(xa)i=1mxmiai1\displaystyle\lim_{x\to a}\frac{x^n-a^n}{x^m-a^m}=\lim_{x\to a}\frac{(x-a)\sum_{i=1}^nx^{n-i}a^{i-1}}{(x-a)\sum_{i=1}^mx^{m-i}a^{i-1}}

=limxai=1nxniai1i=1mxmiai1=i=1naniai1i=1mamiai1\displaystyle=\lim_{x\to a}\frac{\sum_{i=1}^nx^{n-i}a^{i-1}}{\sum_{i=1}^mx^{m-i}a^{i-1}}=\frac{\sum_{i=1}^na^{n-i}a^{i-1}}{\sum_{i=1}^ma^{m-i}a^{i-1}}

=nan1mam1=nmanm\displaystyle=\frac{na^{n-1}}{ma^{m-1}}=\frac{n}{m}a^{n-m}.

Maggie Miller - 5 years, 10 months ago

Calculus approach:

xnanxmam=xnanxaxaxmam=xnanxa÷xmamxa \dfrac{x^n - a^n}{x^m - a^m} = \dfrac{x^n - a^n}{x-a} \cdot \dfrac{x-a}{x^m - a^m} = \dfrac{x^n - a^n}{x-a} \div \dfrac{ x^m - a^m}{x-a}

Applying the limit:

limxaxnanxmam=limxaxnanxa÷xmamxa=(ddx(xn)x=a)÷(ddx(xm)x=a)=[nan1]÷[mam1]=nmanm \begin{aligned} \lim_{x\to a} \dfrac{x^n - a^n}{x^m - a^m} &=& \lim_{x\to a} \dfrac{x^n - a^n}{x-a} \div \dfrac{ x^m - a^m}{x-a} \\ &=& \left ( \left . \frac d{dx} (x^n) \right |_{x=a} \right ) \div \left( \left . \frac d{dx} (x^m) \right |_{x=a} \right ) \\ &=& \left [ n a^{n-1} \right ] \div \left [m a^{m-1} \right ] \\ &=& \dfrac nm a^{n-m} \\ \end{aligned}

Pi Han Goh - 5 years, 10 months ago

Log in to reply

Oh right, you could just apply L'Hopital directly:

limxaxnanxmam=limxaddx(xnan)ddx(xmam)=limxanxn1mxm1\displaystyle \lim_{x\to a}\frac{x^n-a^n}{x^m-a^m}=\lim_{x\to a}\frac{\frac{d}{dx}(x^n-a^n)}{\frac{d}{dx}(x^m-a^m)}=\lim_{x\to a}\frac{nx^{n-1}}{mx^{m-1}}

=limxanmxnm=nmanm\displaystyle =\lim_{x\to a}\frac{n}{m}x^{n-m}=\frac{n}{m}a^{n-m}.

Maggie Miller - 5 years, 10 months ago

Log in to reply

I got it ^_^ . Thank you very much for your useful help & sharing thoughts :) .

Mohamed Ahmed Abd El-Fattah - 5 years, 10 months ago

Thank you very much . Really, very nice approach ^_^ .

Mohamed Ahmed Abd El-Fattah - 5 years, 10 months ago
×

Problem Loading...

Note Loading...

Set Loading...