Polar coordinates: advanced set 1

I do not believe this is subject is polar coordinates.

Note by Taylor Lau
7 years, 11 months ago

No vote yet
2 votes

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Polar coordinates is a way for you to change your perspective of the cartesian plane, to make it easier to understand sometimes complicated functions. There are functions whose cartesian equations are mysterious / hard to work with, but by converting into another frame of reference, gives us a lot more flexibility.

One of the big uses of polar coordinates is in transforming integration questions to make the variables easier to work with. For example, try evaluating

ex2+y2dxdy. \int_{-\infty}^\infty \int_{-\infty}^\infty e^{x^2+y^2} \, dxdy.

As stated in the other discussion started by Shourya:

I don't see why that is an issue. The implicit hint is that you can approach the volume of revolution question via polar coordinates, which would help simplify otherwise strange conditions. Of course, you could do the volume of revolution through normal means, and wade through the ugly integration. Likewise, you could do it via first principles,but that might not be the best approach to use.

Math isn't about sticking to just using certain techniques in certain situations, or memorizing that when you see a question of type X to use standard solution methods Y. You need the flexibility and creativity to apply what you have learnt into novel situations. Especially in the hard set, I try and present various scenarios where it may not be immediately obvious how to approach it, but the hint of the technique should get you started.

Calvin Lin Staff - 7 years, 11 months ago

I had already started a discussion before.

Shourya Pandey - 7 years, 11 months ago
×

Problem Loading...

Note Loading...

Set Loading...