This discussion board is a place to discuss our Daily Challenges and the math and science
related to those challenges. Explanations are more than just a solution — they should
explain the steps and thinking strategies that you used to obtain the solution. Comments
should further the discussion of math and science.
When posting on Brilliant:
Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.
Markdown
Appears as
*italics* or _italics_
italics
**bold** or __bold__
bold
- bulleted - list
bulleted
list
1. numbered 2. list
numbered
list
Note: you must add a full line of space before and after lists for them to show up correctly
# I indented these lines
# 4 spaces, and now they show
# up as a code block.
print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.
print "hello world"
Math
Appears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3
2×3
2^{34}
234
a_{i-1}
ai−1
\frac{2}{3}
32
\sqrt{2}
2
\sum_{i=1}^3
∑i=13
\sin \theta
sinθ
\boxed{123}
123
Comments
Let a = 2d + 1,
b = 2e + 1,
c = 2f + 1
where d,e,f are integers.
Using the quadratic formula we get x = (-b +- sqrt{b^2 - 4ac})/(2a). We will show that b^2 - 4ac cannot be a square number.
Substituting our above equations (a = 2d + 1, b = 2e + 1, c = 2f + 1) into b^2 - 4ac we get 4e^2 + 4e - 16df - 8d - 8f - 3. We can rewrite this as (8)(-2df - d - f) + (4)(e)(e + 1) - 3. Since one of (e) and (e+1) must be even, it follows that 4(e)(e+1) must be divisible by 8. Therefore b^2 - 4ac is congruent to 5 modulo 8. This means that b^2 - 4ac is not a square number, as square numbers must be congruent to 0, 1, or 4 mod 8. This shows that x is irrational.
Suppose that p/q is a root of the quadratic equation and that p,q are coprime, then c is divisible by p and a is divisible by q. Hence both p and q are odd. Substituting p/q for x, we get: q2ap2+qp+c=0.
However, this is clearly impossible as both p, q are odd. Hence there are no rational roots for the equation.
Could you clarify please? Why is this "clearly impossible"? You can rewrite it as ((a/q)(p)(p) + p)/q = -c where a/q is an odd integer (a is divisible by q, a and q are both odd) and p and q and c are all odd integers--how do you know that
the fraction isn't simplifiable to -c
Never mind, I think I've figured it out. Since a/q is odd and p is odd, (a/q)(p)(p) is odd and p is odd, which makes (a/q)(p)(p) + p even. You want (a/q)(p)(p) + p to equal -cq, which is a product of two odd integers and therefore odd. But you can't have an even number equal to an odd number.
@Bogdan Simeonov
–
If the coefficients are odd integers, they can be negative, right? We could somehow choose the coefficients so that LHS is zero. However, if we write the equation as cq2=−(ap2+bpq) and see different cases by taking p,q to be even or odd, we see that the equation may be satisfied only when both p,q are even. But that contradicts the condition that p,q are coprime.
There are 3 odd terms in the final equation. If all of them are positive, then we are done. If one is negative, then the LHS will still be an odd number (odd + odd - odd = odd != 0).
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
Let a = 2d + 1, b = 2e + 1, c = 2f + 1 where d,e,f are integers.
Using the quadratic formula we get x = (-b +- sqrt{b^2 - 4ac})/(2a). We will show that b^2 - 4ac cannot be a square number.
Substituting our above equations (a = 2d + 1, b = 2e + 1, c = 2f + 1) into b^2 - 4ac we get 4e^2 + 4e - 16df - 8d - 8f - 3. We can rewrite this as (8)(-2df - d - f) + (4)(e)(e + 1) - 3. Since one of (e) and (e+1) must be even, it follows that 4(e)(e+1) must be divisible by 8. Therefore b^2 - 4ac is congruent to 5 modulo 8. This means that b^2 - 4ac is not a square number, as square numbers must be congruent to 0, 1, or 4 mod 8. This shows that x is irrational.
Suppose that p/q is a root of the quadratic equation and that p,q are coprime, then c is divisible by p and a is divisible by q. Hence both p and q are odd. Substituting p/q for x, we get: q2ap2+qp+c=0. However, this is clearly impossible as both p, q are odd. Hence there are no rational roots for the equation.
Log in to reply
Could you clarify please? Why is this "clearly impossible"? You can rewrite it as ((a/q)(p)(p) + p)/q = -c where a/q is an odd integer (a is divisible by q, a and q are both odd) and p and q and c are all odd integers--how do you know that the fraction isn't simplifiable to -c
Never mind, I think I've figured it out. Since a/q is odd and p is odd, (a/q)(p)(p) is odd and p is odd, which makes (a/q)(p)(p) + p even. You want (a/q)(p)(p) + p to equal -cq, which is a product of two odd integers and therefore odd. But you can't have an even number equal to an odd number.
Log in to reply
He means that if we multiply by q2, LHS will be odd and RHS =0, clearly a contradiction.
Log in to reply
cq2=−(ap2+bpq) and see different cases by taking p,q to be even or odd, we see that the equation may be satisfied only when both p,q are even. But that contradicts the condition that p,q are coprime.
If the coefficients are odd integers, they can be negative, right? We could somehow choose the coefficients so that LHS is zero. However, if we write the equation asThis is what Colin says.
Why is it impossible?
There are 3 odd terms in the final equation. If all of them are positive, then we are done. If one is negative, then the LHS will still be an odd number (odd + odd - odd = odd != 0).