Prime-o-phile Numbers!

Find all integers which can be represented as the sum of two primes and difference of two primes. (e.g.- 8=5+3=19-11)

#NumberTheory

Note by Aaron Jerry Ninan
4 years, 5 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

All even numbers 4\geq 4; and all odd numbers xx such that x2x-2 and x+2x+2 both are primes.
(If repetition of primes is allowed)

Yatin Khanna - 4 years, 5 months ago

Log in to reply

Can you please explain how you arrived at the answer.

Aaron Jerry Ninan - 4 years, 5 months ago

Log in to reply

To be honest; I played a big gamble there.
Whether every positive even integer can be written as sum and difference of two primes is actually an open problem (till my knowledge goes).
While, the second part can be easily seen. As the sum and difference are odd then there must be one odd and one even prime; and since 2 is the only even prime; the result follows.

Yatin Khanna - 4 years, 5 months ago
×

Problem Loading...

Note Loading...

Set Loading...