I have been recently thinking about the squares of prime numbers "p" and found that the number of the form p^2 - 1 is divisible by 12 except the primes 2 and 3. Is my statement correct ? So , if it is correct can anyone prove how are they divisible by 12?
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
p^2-1 can be written as (p-1)(p+1).2 is the only even prime number.Hence,p+1,p-1 are even.Thus,(p+1)(p-1)is divisible by 4.Also,if we take any three consecutive natural numbers,one of them is divisible by three.Here,if we take (p-1),p,(p+1),then,p is not divisible by 3 as it is prime,thus,either (p+1) or (p-1) should be divisible by 3.Hence,p^2-1 is always divisible by 12 for prime numbers 5 and above.
Log in to reply
Thanks for your proof
Log in to reply
It is simple.No problem.
mADE ME THINK...
p2−1=(p−1)(p+1). Now all primes satisfy: (p≡1mod6) or (p≡−1mod6), (as the other options can be factorized) which means that in both cases we have 6|(p-1)(p+1). Also, both of p -1 and p +1 are divisible by two as p is odd ( for p > 2). ∴ 24|p2 -1 ⇒ 12|p2 -1