Primes....

I have been recently thinking about the squares of prime numbers "p" and found that the number of the form p^2 - 1 is divisible by 12 except the primes 2 and 3. Is my statement correct ? So , if it is correct can anyone prove how are they divisible by 12?

#RealNumbers #NumberThoery

Note by Sriram Venkatesan
6 years, 5 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

p^2-1 can be written as (p-1)(p+1).2 is the only even prime number.Hence,p+1,p-1 are even.Thus,(p+1)(p-1)is divisible by 4.Also,if we take any three consecutive natural numbers,one of them is divisible by three.Here,if we take (p-1),p,(p+1),then,p is not divisible by 3 as it is prime,thus,either (p+1) or (p-1) should be divisible by 3.Hence,p^2-1 is always divisible by 12 for prime numbers 5 and above.

Akshay Bodhare - 6 years, 5 months ago

Log in to reply

Thanks for your proof

Sriram Venkatesan - 6 years, 5 months ago

Log in to reply

It is simple.No problem.

Akshay Bodhare - 6 years, 5 months ago

mADE ME THINK...

vishwathiga jayasankar - 6 years, 5 months ago

p21=(p1)(p+1)p^2 -1 =(p-1)(p+1). Now all primes satisfy: (p1mod6) or (p1mod6)(p\equiv1\mod6)\ or \ (p\equiv-1\mod6), (as the other options can be factorized) which means that in both cases we have 6|(p-1)(p+1). Also, both of p{p} -1 and p{p} +1 are divisible by two as p{p} is odd ( for p{p} > 2). \therefore 24|p2p^{2} -1 \Rightarrow 12|p2p^{2} -1

Curtis Clement - 6 years, 4 months ago
×

Problem Loading...

Note Loading...

Set Loading...