We shall prove this by contradiction. Let P1 = 2 ; P2 = 3 ; P3 = 5 ; . . . . . . . . . . . Pn = m, be the primes in ascending order .suppose there exists a last prime Pn , consider a positive integer “P” = (P1P2P3P4 . . . . . . Pn) + 1 .since P > 1 , some prime number divides “P” . let that number be “A” .since we assumed primes are infinite , “A” must be one among the set {p1 , p2 , p3 , . . . . . . . pn}.So , “A” should divide 1. Here, a contradiction arises. therefore there are infinite number of primes .
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
Hey Sudoku Subbu!The proof is nice but to make it a bit more pleasing to the eye you can use LATEX.For example,instead of "Pn" you can get Pn.The code is \ ( P_{n} \ ).Just remove the spaces.
Log in to reply
i tried that but it remained same as i typed by the by thanks for your appreciation