Three men - conveniently named A, B, C - are fighting a duel with pistols. It's A's turn to shoot.
The rules of this duel are rather peculiar: the duelists do not all shoot simultaneously, but take turns. A fires at B, B fires at C, and C fires at A; the cycle repeats until there is a single survivor. If you hit your target, you'll fire the next person on your next turn.
For example, A might shoot and hit B. With B out of the picture, it would be C's turn to shoot - suppose he misses. Now it's A's turn again, and he fires at C; if he hits, the duel is over, with A the sole survivor.
To bring in a little probability, suppose A and C hit their target with probability 0.5, but that B is better shot, and hits with probability 0.75 - all shots are independent.
What's the probability that A wins the duel?
Probability puzzle/Getting Serious/Puzzle 11
P.S.: Sorry if there are typos! I know the answer. This is a warm-up for the next task. I won’t tell anyone if your answer is right or wrong.
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
I have seen this question...
I think it's 100%
P.S Aryan Sanghi thinks I am a LATEX warden
Log in to reply
Where did he post that??? @Yajat Shamji
Did you see @Frisk Dreemurr's account, its Hamza Anushath, but she made her account after an Undertale character :)