Problem Writing Party: May 23rd to June 5th

Problem Writing Party number 7 was a resounding success! We have 28 quizzes created! I'm flabbergasted.

Here are the quizzes that the Brilliant community helped create:

New Brilliant Challenge Quizzes

You may also have noticed that when we add your problem to a challenge quiz, you will also receive a B-notification about it. That's our way to say "THANKS!" with a capital T. Your contributions are greatly appreciated, and the community loves these quizzes that challenge their problem-solving abilities. Keep it up!

Let's kick off our 8th Problem Writing Party!

How it Works

The party starts right now (May 23rd, 2016) and will last for the next two weeks. Throughout the two weeks, we will be focusing on writing awesome problems for the topics listed in quizzes that need your help on the publish page. The topics are:

GCD / LCMPattern RecognitionEuler's Theorem
Conditional ProbabilityDistribution into BinsChess

To join, submit as many problems as you want to these listed topics. At the end of the party, Brilliant staff will be picking the best 5-10 problems for each topic. These problems will then be immortalized and formed into a challenge quiz. If we pick your problem, then you can brag to your friends because it will be displayed on Brilliant forever! Your problem has a better chance of being selected if you include a graphic (when appropriate) and a solution.

This Party's Topic Listing

The topics of problem submission for this party can be found by navigating over to the Brilliant publish page and checking under the quizzes that need your help section. Just click the contribute button next to the topic you want to make a submission to.

Happy writing and keep the party alive!

Use this note to

  1. Ask questions about the party or brainstorming ideas from Brilliant staff.

  2. Share links to great relevant problems.

  3. Bounce your ideas off each other to help formulate the best problem you can.

#Algebra

Note by Calvin Lin
5 years ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

28 quizzes! Oh wow, that's a world record, or something.

@Elisabeth Bonnell @Saurav Yadav @Sparsh Sarode @Keerthi Reddy @Margaret Zheng @Geoff Pilling @Eli Ross @Chan Lye Lee @Alex Li @Worranat Pakornrat @Robert Melville @Mark Hennings @Andy Hayes @Sambhrant Sachan @Gautam Sharma @David Klein @Pranshu Gaba @Pi Han Goh @Ayush Rai @Ammarah Ehsan @Abhay Tiwari @Akshay Sharma @Andrew Christian @Soumava Pal

Thanks so much for your contributions, and making this such a great success.

I'm sure I missed out a ton of people too. Sorry for not getting everyone!

Calvin Lin Staff - 5 years ago

Log in to reply

Amazing .!!!congrats sir & every contributor...!

Rishabh Tiwari - 5 years ago

Thank you for selecting our problems. ;)

Worranat Pakornrat - 5 years ago

Thank you sir , for selecting My problem :)

Sabhrant Sachan - 5 years ago

Thank you sir ;)

Sparsh Sarode - 5 years ago

Thank you for selecting my problem and I will keep it up😃

Margaret Zheng - 5 years ago

Thank you sir, And even thank you for selecting my problem :D

Keerthi Reddy - 5 years ago

Thanks @Calvin Lin

Akshay Sharma - 5 years ago

Thank you, sir. :)

Soumava Pal - 5 years ago

Here is a question on AP .

These Questions are on Limits of functions

1st ,2nd ,3rd ,4th ,5th ,6th ,7th

Sabhrant Sachan - 5 years ago

Log in to reply

I like your very first question because, from a glance, it looks like an arithmetic progression and geometric progression, but it is a combination of them! Excellent!

This question is also good! There are many ways of approaching this question. I favorite method is to take the log of the exponential function first. Given that your limit has a nice form, I would have phrased the question to "L=ABeL = \dfrac AB e , find A+BA+B".

Overall, very diverse and exciting questions! Do post more! =D

Pi Han Goh - 5 years ago

Thanks! Those are good suggestions :)

Calvin Lin Staff - 5 years ago

Log in to reply

These three are good questions on limit of functions @Calvin Lin : 1st , 2nd , 3rd

Sabhrant Sachan - 5 years ago

What should be done for pattern recognition? Just number theory patterns or counting triangle patterns too?

Ashish Menon - 5 years ago

Log in to reply

@Ashish Menon When replying, make sure your comment is related to the threaded comment. Otherwise, it seems like you're hijacking someone else's comment.


Recursive descriptions, Explicit descriptions, Predicting terms, Visual patterns, etc. NT patterns are fine (e.g. n!n!, nn1 n^n-1 etc).
I'm not sure what you mean by "Counting triangle patterns". If you are thinking of the problems that you posted long time ago with "draw 40 points and connect them to another 40 points", then no, those are not under pattern recognition.

Calvin Lin Staff - 5 years ago

Log in to reply

@Calvin Lin First of all sorry I wont reply somewhere unrelated. Second of all not those long ago questions. Just simple ones like in one figure there are 4 squares, in the next there are 9 of them, in the next there are 16 of them, so how many squares will be there in the 10th figure.

Ashish Menon - 5 years ago

Log in to reply

@Ashish Menon Those are good. They are similar to problems in the Pattern Recognition chapter.

Calvin Lin Staff - 5 years ago

Log in to reply

Here is one: Mate in 3, not 4.

Patrick Corn - 5 years ago

Ah yes, I love your chess problems!!

Calvin Lin Staff - 5 years ago

Log in to reply

Thank you for the compliment!

Seth-Riley Adams - 5 years ago

Here's one for Conditional Probability:

Mark Hennings - 5 years ago

Log in to reply

Ah, that's beautiful. I'm always amazed that it works out so nicely.

Calvin Lin Staff - 5 years ago

Here is one for Arithmetic progression.

Ashish Menon - 5 years ago

Log in to reply

This is great! Your question didn't explicit tell us what the common difference or even the number of terms in this progression. It's less common to find these variables because most of them we are told to find the sum of the progression where all the relevant data are already given. Nice question!

Pi Han Goh - 5 years ago

Log in to reply

Thanks!

Ashish Menon - 5 years ago

I missed the last PWP ( because I went to vacation :D ) , but this time I won't !

Here are some of my problems :
Pattern Recognition - Those Golden Shapes .
Chess - Is this a party or a war ?

Anish Harsha - 5 years ago

Log in to reply

Where did you go on vacation?

People really like these chess puzzles, so we're starting to build a chapter around them :)

Calvin Lin Staff - 5 years ago

Log in to reply

To my native, Goa sir .

Anish Harsha - 5 years ago

Here is one for limits of functions.

Log in to reply

I added the case for the limit to be irrational, just in case :)

That's a great question, relating (1+x)1x (1 + x) ^ \frac{1}{x} with ee.

Calvin Lin Staff - 5 years ago

Log in to reply

Thanks! Didn't think of the irrational part.

Thank you!

Here is one for arithmetic progressions.

Aaron Tsai - 5 years ago

Log in to reply

Oh, that's a nice one.

Calvin Lin Staff - 5 years ago

This one and this one are two more for conditional probability.

Geoff Pilling - 5 years ago

Log in to reply

Ah! A generalization of monty hall problem! I love both of them! Keep them coming Mr Geoff!

Here's another problem written by the legend @Brian Charlesworth \Longrightarrow Monty Hall revisited.

Pi Han Goh - 5 years ago

Log in to reply

Ah yes, thats a good one... Having two halves of a $10,000 bill was a cool twist! :^)

Geoff Pilling - 5 years ago

Does this one count as conditional probability?

Geoff Pilling - 5 years ago

Log in to reply

Conditionally speaking, yes :)

Calvin Lin Staff - 5 years ago

Log in to reply

OK, sounds good, I'll go ahead and submit it then! :)

Geoff Pilling - 5 years ago

My submission to conditional probability See you again

Rohit Ner - 5 years ago

Log in to reply

I've edited your problem for clarity + grammar + punctuation.

Original version:

Dom and Brian decide to race along the streets of Brazil. However, they know that the cops may get behind them. Dom being a fussy driver, the probability of him being intercepted by the police is 0.7, whereas as that of Brian being intercepted is 0.3. The probability of there cars being impounded (after being intercepted) are equal i.e 0.5. What is the probability of Brian's car is impounded.

New version:

Dom and Brian decided to race along the streets of Brazil, where the cops may chase after them. The probability of being intercepted by the police is 0.7 for Dom and 0.3 for Brian. After being intercepted, the probability that their cars get impounded is 0.5.
What is the probability that Brians's car gets impounded?

Do you see how this makes the problem clearer?

Calvin Lin Staff - 5 years ago

Log in to reply

I am a bit poor at clarity + grammar + punctuation. :P thanks for the edit .

Rohit Ner - 5 years ago

For distribution into bins I have: 9 balls 3 colors, Egg Hunt, I come bearing gifts, and 3 colors of paint

Geoff Pilling - 5 years ago

Log in to reply

Woah! You got a knack for writing simple engaging questions!

Pi Han Goh - 5 years ago

Log in to reply

Thanks... I do my best... Glad you like them... You too! :)

Geoff Pilling - 5 years ago

A Brand New Problem On Limits is here

Sabhrant Sachan - 5 years ago

Log in to reply

I'm so lucky to be the first solver of this problem!

Christopher Boo - 5 years ago

Log in to reply

Try This one

Sabhrant Sachan - 5 years ago

Log in to reply

@Sabhrant Sachan Got it!

UPDATE : Woah your solution is much faster than mine!

Christopher Boo - 5 years ago

Ah, that's really interesting! Can you add a solution to it? Thanks :)

Calvin Lin Staff - 5 years ago

Here are my questions on limits Limit of composition 1 and Limit of composition 2

Prince Loomba - 5 years ago

Log in to reply

Ah yes, proving that the limit actually exists (or fails to exists) is the challenging part. Nice!

Pi Han Goh - 5 years ago

Log in to reply

Thanks

Prince Loomba - 5 years ago

Here are some problems to motivate your progress in Arithmetic Progressions .

Progress your way : Part 1 , Part 2 , Part 3 , Part 4 .

Anish Harsha - 5 years ago

Log in to reply

Thanks! I really like Part 2. I think it could benefit from an image of how the logs are placed.

Calvin Lin Staff - 5 years ago

Log in to reply

Your welcome, sir !

Anish Harsha - 5 years ago

Here is my chess entry

Geoff Pilling - 5 years ago

Log in to reply

All the chess problems have their own unique way to submit a solution..

Christopher Boo - 5 years ago

Log in to reply

Haha.... Yup!

Geoff Pilling - 5 years ago

Log in to reply

@Geoff Pilling We should figure out a way to standardize the answer in chess problems.

Wouldn't it be nice if you could actually move the chess pieces around? Oh, such dreams.

Calvin Lin Staff - 5 years ago

Log in to reply

@Calvin Lin Definitely... The thing I don't like about some of them is that they don't always define unique moves... If we could standardize, that would be great! :^)

Geoff Pilling - 5 years ago

Here is my thirteenth one for AP

Ashish Menon - 5 years ago

Log in to reply

I think this is nice. But do try to mix up the denominators in each of these terms, otherwise, it's much easy to figure out the common difference.

Pi Han Goh - 5 years ago

Log in to reply

That's a good question to ask. Suppose we want a AP of (positive) rational terms where all of the denominators are distinct. What is the minimum value of the largest denominator?

Calvin Lin Staff - 5 years ago

Hmmm, thanks will keep in mind for more questions.

Ashish Menon - 5 years ago

This is my new question on Number Theory-Sweet Building.

Enjoy!

Worranat Pakornrat - 5 years ago

Log in to reply

This question is adorable!

Pi Han Goh - 5 years ago

Here is my entry on Euler's Theorem.

Last Two Digits

Soumava Pal - 5 years ago

Log in to reply

Your solution = My method. Modular inverse is an underrated method. NIce solution

Pi Han Goh - 5 years ago

Log in to reply

@Pi Han Goh

Yes, modular inverse is a really interesting part of number theory. :D

Soumava Pal - 5 years ago

Intriguing problem! I solved it in a different way, and have added it as a solution.

Pranshu Gaba - 5 years ago

Log in to reply

@Pranshu Gaba

Thanks, I saw your solution, and have up voted it. It is easier. :)

Soumava Pal - 5 years ago

My question on chess.

Attack The White Squares

Lee Care Gene - 5 years ago

Log in to reply

I loved this question! Thanks for sharing :)

Pranshu Gaba - 5 years ago

Great picture. It really makes it easy to visualize your question. Keep posting more!! =D

Pi Han Goh - 5 years ago

Here is a problem on Pattern Recognition.

Pranshu Gaba - 5 years ago

Log in to reply

Nice problem Pranshu!

Ashish Menon - 5 years ago

It just so happened that I published a chess problem yesterday :) Here it is.

Log in to reply

Perfect timing :)

Calvin Lin Staff - 5 years ago

Here is my third submission for pattern recognition part.

Ashish Menon - 5 years ago

Here is my fourth one on Arithmetic progression-

Ashish Menon - 5 years ago

Here is my fifth submission for arithmetic progression part.

Ashish Menon - 5 years ago

Log in to reply

Oh nice.

The question could be tidied up slightly by simply asking:

Is it true that a3+c3+6abc=8b3 a^3 + c^3 + 6 abc = 8 b^3 ?

Calvin Lin Staff - 5 years ago

Log in to reply

Thanks, I have edited it accordingly.

Ashish Menon - 5 years ago

Here's my question on Combinatorics-Conditional Probability: Fighting Fish.

Worranat Pakornrat - 5 years ago

Log in to reply

That's a killer question!

Calvin Lin Staff - 5 years ago

Log in to reply

Thanks. That's the way it is. ;)

Worranat Pakornrat - 5 years ago

Log in to reply

Hm, can I remove the "mod 2016" condition? That seems really arbitrary to me, and we're just making people jump through hoops to answer it. I think calculating AA is sufficient.

Calvin Lin Staff - 5 years ago

Here is my sixth submission for arithmetic progression section.

Ashish Menon - 5 years ago

Log in to reply

Haha! This reminds me of heron's formula and brahmagupta's fomula! Do post more questions! =D

Pi Han Goh - 5 years ago

Log in to reply

Herons formula! LOL

Ashish Menon - 5 years ago

Here is my seventh submission for AP section

Ashish Menon - 5 years ago

Log in to reply

This is nice! We don't have to find the first term nor the common difference, and yet, we can immediately get the answer!

This inspires me to post an arithmetic progression question of my own!

Pi Han Goh - 5 years ago

Here and here are my conditional probability submissions... Enjoy! :^)

Geoff Pilling - 5 years ago

Here is my limit submission.

Geoff Pilling - 5 years ago

Log in to reply

But limnn!!n=limnn!!n=limn1=1 \displaystyle \lim_{n\to\infty} \dfrac{n!}{!n} =\lim_{n\to\infty} \dfrac{ \cancel n \cancel ! }{\cancel ! \cancel n} = \lim_{n\to\infty} 1 = 1. haahahaha! Just kidding!

It's weird that derangements and factorials "share the same symbols". I guess that's what this question so good. Nice question! =D

Pi Han Goh - 5 years ago

Log in to reply

Ha ha ha... Thanks Pi! ;-)

Geoff Pilling - 5 years ago

My problem on conditional probability-The Luck

Www Www - 5 years ago

Log in to reply

Hm, that problem could be edited for clarity, which would make it more engaging for others. Would you like help with that?

Calvin Lin Staff - 5 years ago

Here is my tenth submission for AP section.

Ashish Menon - 5 years ago

Here's my problem Find It Without Plugging Values

Anuj Shikarkhane - 5 years ago

Log in to reply

That's a nice one to play around with :)

Calvin Lin Staff - 5 years ago

Log in to reply

Thanks!

Anuj Shikarkhane - 5 years ago

Here goes my 11th one.

Ashish Menon - 5 years ago

@Calvin Lin sir, question for AP and GP together:Just, AP

Rishabh Sood - 5 years ago

Log in to reply

For decimal answers, have them be accurate to a 2% margin. This ensures that people who round up or down will still be able to be marked correct.

Calvin Lin Staff - 5 years ago

My question on GCD/LCM.

Cubic Cuboids (Updated)

Lee Care Gene - 5 years ago

Log in to reply

Hm, can you add a solution to that problem? I think you're making an assumption about how the cuboids stack up.

Calvin Lin Staff - 5 years ago

Log in to reply

Really sorry. I carelessly got the answer messed up. Updated the question.

Lee Care Gene - 5 years ago

Here is a question on arithmetic progression..algebra it

Sparsh Sarode - 5 years ago

Log in to reply

I've suggested a change to the problem that removes the condition a+b+c0a+b+c \neq 0 .

Calvin Lin Staff - 5 years ago

Log in to reply

Changed it.. Thank you

Sparsh Sarode - 5 years ago

A new one on LCM-GCD: GCD vs LCM

Worranat Pakornrat - 5 years ago

Log in to reply

Ah yes, that's a nice basic fact. Certainly one to add to the L1/2 collection :)

Calvin Lin Staff - 5 years ago

Log in to reply

Thanks. It's a basic fact that many may overlook.

Worranat Pakornrat - 5 years ago

Here is my twelfth one for AP

Ashish Menon - 5 years ago

Log in to reply

I've offered a much cleaner solution. Can you figure that out?

Calvin Lin Staff - 5 years ago

Log in to reply

Yes, sum of the terms equidistant from the back and end are equal. So, last term + first term = 2 × middle term. Else , middle term is arithmetic mean of first and last term out. So, 2 × middle term = first term - last term.

Ashish Menon - 5 years ago

Log in to reply

These are great questions! I really enjoyed 1 and 2. I've edited 2 for clarity.

I have slight difficulty understanding 3, due to the numerous terms which could be ambiguous. I've offered an alternative phrasing for 3. Can you help me review and improve it? Thanks!

Calvin Lin Staff - 5 years ago

Log in to reply

Thank you sir.For 3rd I have posted the solution.You can see it and make it correct accordingly.I will re-view it. :)

Log in to reply

@A Former Brilliant Member Thanks. I've updated the phrasing accordingly. I removed "An even number of arithmetic means are added" as that is ambiguous. E.g. if a=0,b=1a = 0, b = 1 , do we add the AM's of 12 \frac{1}{2} an even number of times? Or do we add 12,14,18,116 \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16} \ldots ?

Calvin Lin Staff - 5 years ago

Where will you add this question @Calvin Lin :P

Sabhrant Sachan - 5 years ago

Log in to reply

Hmmm.. I think this is unncessarily complicated and it should split into 4 question: search for A, B, C and D. For what it's worth, I think your limit for "L" does not exists.

Pi Han Goh - 5 years ago

Log in to reply

I think you are right , I will split the questions . By the way , the limit exists . Hint : Sandwich theorm

Sabhrant Sachan - 5 years ago

Here is my fourteenth submission both for pattern recognition and arithmetic progression.

Ashish Menon - 5 years ago

Log in to reply

I don't quite like "Oh, let's break this up into N sequences, and claim that there is such a pattern for them". Why can't we break it up into 50 sequences with a random pattern in them?

Avoid over-complicating a problem.

Also, a bonus is not a hint.

Calvin Lin Staff - 5 years ago

Log in to reply

O didnt try breaking it up like that. I just mixed up 3 APs alright I will poat easy and simple questions in future.

Ashish Menon - 5 years ago

Problem 1 Problem 2 Problem 3 Problem 4

These are some from my old problems. ( No idea about levels)

For pattern recognition , can i post numerical patterns? Or graphical only?

Sachin Vishwakarma - 5 years ago

Log in to reply

These problems could be cleaned up slightly. Also, several of them do not have good solutions. Can you add a clear solution to them?

Calvin Lin Staff - 5 years ago

OHhhh I like your sum of sines limit question! It's tempting to say the answer is 0 by assuming all of them are 0.

Pi Han Goh - 5 years ago

Here is my fourteenth submission for arithmetic progressions, pattern recognition and to some extent logical reasoning.

Ashish Menon - 5 years ago

Log in to reply

This problem is once again very convoluted. Please work on simplifying your statements and making them clear. If you're inventing a phrase, make sure you define it for everyone else.

Calvin Lin Staff - 5 years ago

a towering limit a moderate level problem on limits that i just created ! :)

Rohith M.Athreya - 5 years ago

Log in to reply

Woah! This question is best question yet! It's rare to see a power tower limit. I love it!

I've converted your solution to LaTeX. Hope you liked it!

Pi Han Goh - 5 years ago

Log in to reply

yeah its great!!thanks:)

Rohith M.Athreya - 5 years ago

i didnt understand can u plz explain?(abt thiz party)

Palepu Tarun Sathwik - 5 years ago

Log in to reply

The community is writing up problems in specific chapters, and the great ones will be put into challenge quizzes for those chapters. You can click on the "Level X" links to see examples of problems generated in the previous party.

Calvin Lin Staff - 5 years ago

Here is my fifteenth submission for AP section.

Ashish Menon - 5 years ago

Log in to reply

You don't require the 2nd part of the question, sum to n-1 terms...

Sparsh Sarode - 5 years ago

Log in to reply

Yes I know, I thought it would make calculation easier by just subtracting them and obtaining the nth term.

Ashish Menon - 5 years ago

Here is my sixteenth entry for AP

Ashish Menon - 5 years ago

Log in to reply

Wonderful question + solution. I've added bullet points to make it neater.

Pi Han Goh - 5 years ago

Log in to reply

Thank you very much. :) :)

Ashish Menon - 5 years ago

Here is my seventeenth submission for AP

Ashish Menon - 5 years ago

Log in to reply

This is cute. There are a few issues, though:

You should mention that the number of odd terms and the number of even terms are equal. Otherwise, we wouldn't have known whether the last term is odd or even. Do you know how to rephrase your question?

Plus, looking at your solution tells us that you applied the arithmetic progression sum formula. Which is correct, but much longer than necessary. There's a much simpler solution.

Hint: The (absolute) difference between these sum can be expressed as (S2+S4+S6++Sn)(S1+S3+S5++Sn1)=(S2S1)+(S4S3)+(S6S5)+(SnSn1)(S_2 + S_4 + S_6 + \cdots + S_{n} ) - (S_1 + S_3 + S_5 + \cdots + S_{n-1} ) = (S_2 - S_1) + (S_4 - S_3) + (S_6-S_5) \cdots + (S_n - S{n-1}) .

Pi Han Goh - 5 years ago

Log in to reply

In my solution I have proved that it ends with an odd number because sum of ecen numbered termw is more than the sum of odd numbered terms. Since it starts witg a positive odd term and its common difference is a positive integer, it ends with an even number. Anyways thanks! As I said before, my phrasing skills are a bit off. I am working to improve it.

Ashish Menon - 5 years ago

Log in to reply

@Ashish Menon Unfortunately, your comment is not necessarily. Consider the case when the common difference is negative.

Pi Han Goh - 5 years ago

Log in to reply

@Pi Han Goh I have indicated that it is a positive integer.

Ashish Menon - 5 years ago

Log in to reply

@Ashish Menon Oh right. My bad.

Pi Han Goh - 5 years ago

Log in to reply

@Pi Han Goh Thanks for your help. Anyways is mentioning this way ok or would you like me to edit the question directly to the question has an even number of terms?

Ashish Menon - 5 years ago

Log in to reply

@Ashish Menon I would consider rephrasing your question such that the phrase "common difference is a positive integer" is (almost) at the start of the sentence.

Pi Han Goh - 5 years ago

Log in to reply

@Pi Han Goh Thanks! I did that one.

Ashish Menon - 5 years ago

Can this one be useful for the problem writing party?

Alex Spagnoletti - 5 years ago

Log in to reply

Hmmm, it seems that you only applied properties of modular arithmetic. So, unfortunately, I don't think this counts. =(

For starters, you can post some simple Euler's theorem questions that uses fermat's little theorem.

Pi Han Goh - 5 years ago

Log in to reply

Thank you. I'll post something with fermat's Little theorem soon. Then I'll post it here ok?

Alex Spagnoletti - 5 years ago

Log in to reply

@Alex Spagnoletti Sure thing!! =D

Pi Han Goh - 5 years ago

Here is my seventeenth entry for AP section.

Ashish Menon - 5 years ago

Here is a problem on limts

Sparsh Sarode - 5 years ago

Log in to reply

Thanks for using latex in the problem.

It would be great if the solution was in Latex too :)

Calvin Lin Staff - 5 years ago

My entries:

AP & GP - Here, here and here

Hung Woei Neoh - 5 years ago

Another problem on limits: can u limit the floor?

Sparsh Sarode - 5 years ago

Here is my eighteenth submission for AP section. I have tried my best to make the phrasing as clear as possible. Please comment.

Ashish Menon - 5 years ago

Here is my nineteenth entry for AP section.

Ashish Menon - 5 years ago

Here is a problem:

3 in 1

Soumava Pal - 5 years ago

Log in to reply

Hmmmm, it seems that you have posted 3 questions into one question. I think it's better to solve them all separately.

Pi Han Goh - 5 years ago

Here is a problem on limits...

Sparsh Sarode - 5 years ago

My entries will be posted here.

Limits:

Pattern Recognition:

Arithmetic progessions:

Hobart Pao - 5 years ago

here is my another problem on limits, Limit of intercept

Prince Loomba - 5 years ago

Here is my twentieth entry for AP section.

Ashish Menon - 5 years ago

Here is my twenty second entry for AP section.

Ashish Menon - 5 years ago

@Calvin Lin sir is arithmetic progressions, limits removed drom the problem writing party?

Ashish Menon - 5 years ago

Log in to reply

We've got a bunch of problems in those chapters. So for those who are looking at the note, I would like for them to focus on the others.

Calvin Lin Staff - 5 years ago

Here is my twenty-third entry for GCD/LCM section.

Ashish Menon - 5 years ago

Log in to reply

Nice problem, Ashish, although I think this is more suited for principle of inclusion and exclusion than GCD and LCM.

Pranshu Gaba - 5 years ago

Log in to reply

Hmm. Thanks :) :)

Ashish Menon - 5 years ago

Hello! Here is my Chess problem: The new knight

Arul Kolla - 5 years ago

Log in to reply

Great problem!

Seth-Riley Adams - 5 years ago

Cute question. I'm still wondering how to prove that the answer is indeed minimal.

Pi Han Goh - 5 years ago

That's known as the elongated knight, or a camel (in Quatrochess).

Calvin Lin Staff - 5 years ago

Here is my different sequence

Akash Shukla - 5 years ago

Log in to reply

Hmmm, what chapter does this question falls into?

Pi Han Goh - 5 years ago

Log in to reply

At first its from number theory,then it comes from sequence.

Akash Shukla - 5 years ago

Log in to reply

@Akash Shukla Shouldn't this fall under Diophantine equations?

Pi Han Goh - 5 years ago

Log in to reply

@Pi Han Goh I don't know about this. But if you say so, then it must be.

Akash Shukla - 5 years ago

Here's my problem for GCD/LCM!

Pranshu Gaba - 5 years ago

Log in to reply

Short and sweet setup! Reshared!

Pi Han Goh - 5 years ago

Second question on chess.

Fill It Up With Pawns

Lee Care Gene - 5 years ago

Here's the easy one on Combinatorics-Conditional Probability: Rain or Shine.

Worranat Pakornrat - 5 years ago

A more complicated one on Combinatorics-Conditional Probability: Date with a Psychic.

Worranat Pakornrat - 5 years ago

Log in to reply

Ah, be careful of division by zero!

Calvin Lin Staff - 5 years ago

Third question on chess.

Kingly Kings

Lee Care Gene - 5 years ago

Log in to reply

This is nice!

Pi Han Goh - 5 years ago

Log in to reply

Thanks! I will post more questions like this.

Lee Care Gene - 5 years ago

Fourth question on chess.

Queenly Queens

Lee Care Gene - 5 years ago

Here is a problem for Limits of Functions

Log in to reply

Thanks for fixing the problem. It's a good one, and not many people are used to such a denominator.

Calvin Lin Staff - 5 years ago

Log in to reply

Ah, that's a nice one!

Calvin Lin Staff - 5 years ago

My fifth question on chess.

Roomy Rooks

Lee Care Gene - 5 years ago

One more question on limits

Prince Loomba - 5 years ago

Log in to reply

Hm, can you add a solution to that? The units doesn't seem quite right to me.

Calvin Lin Staff - 5 years ago

Log in to reply

I have added but image is small to be clearly visible @Calvin Lin

Prince Loomba - 5 years ago

Here is one for Euler's theorem.

Aaron Tsai - 5 years ago

Log in to reply

Hm, but your solution doesn't use Euler's Theorem ...

Calvin Lin Staff - 5 years ago

Hi Aaron, your question doesn't fit into Euler's Theorem because it doesn't apply any of the functions in that chapter. It should only be in that chapter if you have applied at least one of the following concepts:

For starters, you can simply write up another question with numbers whose powers are ridiculously large.
Like "What are the last three digits of 998106\large 998^{10^6}?"
Would you like to post another version of this question?

Pi Han Goh - 5 years ago

Log in to reply

I won't post another version. I had commented on it here because one of the moderators had categorized it into Euler's Theorem. Thanks!

Aaron Tsai - 5 years ago

Here is my ninth submission for lcm section.

Ashish Menon - 5 years ago

Log in to reply

Ops it seems like you don't agree with my answer, and people are arguing. You might want to clarify and define everything precisely!

Christopher Boo - 5 years ago

Log in to reply

@Christopher Boo you are absolutely correct , I have requested @Ashish Siva to edit the solution.

Rishabh Sood - 5 years ago

Try this

Abhi Kumbale - 5 years ago

Log in to reply

Try this https://brilliant.org/profile/abhi-pwu19k/sets/my-creations-check-them-out/413351/problem/interesting-polynomial/

Abhi Kumbale - 5 years ago

Log in to reply

Hmmm, I think you're making random connection between different math backgrounds, which will make this question rather cumbersome to solve.

Do post more though!

Pi Han Goh - 5 years ago

Log in to reply

@Pi Han Goh I agree with Pi Han. Avoid over-complicating the problem and making people jump through hoops to work on it. If the problem is interesting, you want to keep it simple. If the problem is boring, it doesn't help to add more (boring) parts to it.

Calvin Lin Staff - 5 years ago

Log in to reply

Oh nice one. I wonder if we can relate the method of differences with this "method of sums".

Calvin Lin Staff - 5 years ago

Here's my entry for GCD/LCM!

Pi Han Goh - 5 years ago

Log in to reply

Nice problem, Pi!

Geoff Pilling - 5 years ago

Log in to reply

Hahah I know thanks! I never saw​ any Number Theory questions from you before.... would you like to post some?

Pi Han Goh - 5 years ago

Log in to reply

@Pi Han Goh Ah... Number theory... OK, lemme see what I can come up with.

Geoff Pilling - 5 years ago

@Pi Han Goh Two problems for @Pi Han Goh : This one and this one. (The closest I've come to a number theory so far, although maybe they are more of "expectation value" problems???) Oh well they're still kinda fun... Enjoy! I'll try to think of some good number theory problems...

Geoff Pilling - 5 years ago

Log in to reply

@Geoff Pilling Hmmmm... expected value falls under Combinatorics. And unfortunately, Calvin is not looking for Expected values questions right now.

But great questions nonetheless!

Pi Han Goh - 5 years ago

And here's my entry for Euler's theorem!

Pi Han Goh - 5 years ago

Here's my limits of functions entry!

Pi Han Goh - 5 years ago

Here is my twentyfirst entry for AP section.

Ashish Menon - 5 years ago

Here is a problem for Arithmetic Progressions

Here is my second submission for GCD section.

Ashish Menon - 5 years ago

Log in to reply

I think it's quite simple. I expect your problems to be more towards thinking rather than straightforward...

Christopher Boo - 5 years ago

Log in to reply

Hmmm it was intended to be simple. Or how about this one?

Ashish Menon - 5 years ago

good luck Calvin Lin .. I will do .

mohamed aboalamayem - 5 years ago

Log in to reply

Thanks!

Calvin Lin Staff - 5 years ago

Expected value level 5 leave me please!

Akul Agrawal - 5 years ago

Log in to reply

I reviewed that problem as I was creating the Expected value set. It was unclear what you meant by "As soon as is distance exceeds X, it will find itself outside the cube with the same distance from the center and can again enter the cube only when distance becomes X". This also seems like a forced construct, which makes it less engaging to others to think about. As such, I passed over adding your problem.

Problems that are engaging, clearly explained, and simplified are much more likely to appeal to the community.

Calvin Lin Staff - 5 years ago

@Calvin Lin sir I think this question would be terrifically for the logic quiz: logic challenge 1

Rishabh Sood - 5 years ago

Log in to reply

This problem reminds me of a game I played during elementary school, but now a harder version!

Christopher Boo - 5 years ago

Log in to reply

Thank you, :D

Rishabh Sood - 5 years ago

For the problem writing party, we are focusing on specific chapters each fortnight. Problems in these chapters will receive more attention, and be used to form the challenge sets from the community.

Currently, there isn't a topic that is relevant for the problem "logic challenge", and I do not think it should be forced into any of these 8 chapters.

Calvin Lin Staff - 5 years ago

Log in to reply

Ok,sir whenever you find a relevant topic for it, please try to consider my question

Rishabh Sood - 5 years ago

Arithematic Progressions? I have a whole set:

last one alive

last one alive 2

last one alive 3

last one alive 4

last one alive x

Rishabh Sood - 5 years ago

Log in to reply

Not sure these are arithmetic progression problems...

Alex Li - 5 years ago

Log in to reply

@Alex Li and @Calvin Lin sir as you both have strongly opposed my problems, here is how the last one alive problems can be solved by using AP:

Suppose there are n people in the circle, and we know the answer for all numbers smaller than n. If n=2k

is even, then every second person gets killed, and we are left with the k numbers 1,3,5,…,n−1

. We can reduce this to a problem with k

people, by mapping the numbers 1,3,5,...,n−1

onto 1,2,3,...,k

. If the solution for k

people is the person numbered i

, then the solution for n

people is 2i−1

, since the ith number in the sequence is 2i−1

If n=2k+1

is odd, then we are left with the k numbers 3,5,…,n. If the solution for k people is the person numbered i, then a similar reduction shows the solution for n people is 2i+1 Let Sk be the solution for k people.

Then S100S_{100}=2S502S_{50}-1

=2(2S252S_{25}−1)−1=4S254S_{25}−3

=4(2S122S_{12}+1)−3=8S128S_{12}+1

=8(2S62S_{6}−1)+1=16S616S_{6}−7

=16(2S32S_{3}−1)−7=32S332S_{3}-23

=32(2S12S_{1}+1)−23=64S164S_{1}+9

=64∗1+9

=73

Rishabh Sood - 5 years ago

Log in to reply

@Rishabh Sood This is an example for 100 people in a circle

Rishabh Sood - 5 years ago

@Rishabh Sood Right, so that solution indicates it's much more about finding the recursive nature, instead of the "arithmetic progression" aspect of the problem.

Calvin Lin Staff - 5 years ago

Log in to reply

@Calvin Lin But sir it's possible to solve them with AP and according to me these questions or even one of them would be great if considered a part of the quizzes. I have got appreciation for these questions from many people on brilliant and other websites I posted these questions on.

Rishabh Sood - 5 years ago

Log in to reply

@Rishabh Sood I agree that they are great and interesting problems.

However, I disagree that they are suitable for the Arithmetic Progressions chapter, because of how forced the connection is. At no point in time in your solution was the arithmetic progression nature of the sequence referenced. Instead, it's the recursive nature of calculating S2k S_{2k} and S2k+1 S_{2k+1} from Sk S_k that's important in solving this problem. IE I don't see how an understanding of arithmetic progressions (whether it's the structure, or the sum, or the graph) would help someone solve this problem. Whereas, I see a strong connection between realizing the underlying recursive nature of the setup and being able to solve the problem.

Calvin Lin Staff - 5 years ago

Log in to reply

@Calvin Lin Alright sir, Thsi is the 3rd time, I tried and did not get a problem in the quizzes. Will try next time

Rishabh Sood - 5 years ago

Log in to reply

@Rishabh Sood I can help provide you with more feedback, to improve the relevance of your problems. Taking a quick glance through your problems, I think the main area to improve is to understand what makes the problem exciting for others to engage with, and how to have clear presentation that reflects that. One way to get started is to look at the existing challenge / concept quizzes, and see which questions inspire you, and then create different versions of those.

This problem of yours is in the inscribed and circumscribed figures Level 2 Challenges. The simplicity of it attracts people to want to work through it and figure out how they are related.
This other problem is also pretty engaging to the community, and I've placed it in the circle properties quiz.

Calvin Lin Staff - 5 years ago

Log in to reply

@Calvin Lin Thank you sir

Rishabh Sood - 5 years ago

Log in to reply

@Rishabh Sood Congrats!

Ashish Menon - 5 years ago

Log in to reply

@Ashish Menon Thank

Rishabh Sood - 5 years ago

Log in to reply

@Rishabh Sood You bro

Rishabh Sood - 5 years ago

@Rishabh Sood Correct me if I'm wrong, but the "last one alive" series differs just in the initial numbers of people right? Although it's solvable by math, it would be more accurate to put it under the Computer Science section. Let the program do the work! In fact, you might not notice, there is a well-studied CS problem called Josephus problem which is exactly the same as yours! The coincidence, haha.

Christopher Boo - 5 years ago

Log in to reply

@Christopher Boo Very well noticed 👍👍👍👍👍

Rishabh Sood - 5 years ago

These are not problems in arithmetic progressions. Yes, for the first n/2 n/2 , it follows a pattern of 2k1 2k-1 . However, that pattern breaks after one loop around the circle, and it is not easily described via an arithmetic progression.

Calvin Lin Staff - 5 years ago

Uh @Calvin Lin sir are these questions fine? Please at least see them once you never appreciate my questions

Rishabh Sood - 5 years ago

Log in to reply

Hang on, I'm in the midst of replying to this thread. I am not an octopus with 8 arms, I only have 2 unfortunately.

Calvin Lin Staff - 5 years ago

Log in to reply

@Calvin Lin 😂😂😂😂😂😂, sorry sir.

Rishabh Sood - 5 years ago

More AP questions: Just, AP Just, AP 2

Rishabh Sood - 5 years ago

Log in to reply

@Rishabh Sood "Just AP" is NOT an AP.

I do not understand what "Just AP 2" refers to.

Calvin Lin Staff - 5 years ago

Log in to reply

@Calvin Lin Alright sir as no one seems to understand any of my problems, I have deleted all of them. Hope that satisfies what you asked for. And by the way, sir we can solve all of the last one alive problems by using AP.

Rishabh Sood - 5 years ago

Log in to reply

@Rishabh Sood There was no need to delete "Just AP". It's just that an=nn+1 a_n = \frac{n}{n+1} is not an arithmetic progression, and so I objected to saying "Consider the AP an=nn+1 a_n = \frac{n}{n+1} ".

For "Just AP 2", I was asking you to post a solution, so that I can figure out what you were trying to express.

I know that asking good questions is a skill, that takes time to be developed (and certainly isn't one that's taught in schools). It helps if your problem is interesting, easily understood and unambiguous. Please do not be discouraged, and continue going at it!

Calvin Lin Staff - 5 years ago

Sir please view my posted questions, if you find any one good , then. PLease include them in the quiz

Rishabh Sood - 5 years ago
×

Problem Loading...

Note Loading...

Set Loading...