Problems with diagonals

Alright, so I've been bombarded /bombarded myself with questions lately and I either a) can't solve them or b) don't have the time. So if you can answer any of the following questions or even yeild a clue as what to do I'd really appreciate it

a) what's the probability that when two random diagonals of a polygon are chosen, they intersect within the region of the polygon. A general formula for all polygons that don't have an intersection made of more than two diagonals is (n4)((n(n3)2)2)\dfrac{\dbinom{n}{4}}{\dbinom{\left(\dfrac{n(n-3)}{2}\right)}{2}}

b) what's the area of the n-gon formed in a 2n-sided figure by connecting 1/2 of everyother vertex. (Exg: connecting 1/2 of everyother vertex of an octagon will form a square.)

C) what's the area of the 2n sided figure formed by connecting everyother vertex in a 2n-gon. (Exg: when doing this, an octagon is formed inside an octagon)

D) what's the area created by joining every k th vertex. I personally think that the best approach to this is to find the length of the diagonal when k divides n without remainder. This is much easier and, in my opinion, actually possible.

Most of the info that I along with some others have generated is in the comment section of this problem.

#Geometry #NumberTheory #Help #Problems #Easymoney

Note by Trevor Arashiro
6 years, 6 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Note that under affine transformations, interior polygons are still similar to exterior polygons and so the answer to (b), (c) and (d) hold for non-regular polygons.

Jake Lai - 6 years, 6 months ago

Log in to reply

Nice observation! But for now I'm just trying to prove the cases for regular polygons. Irregular polygons is the next step

Trevor Arashiro - 6 years, 6 months ago

Log in to reply

Yeah, it should be easy enough to prove after generalising joining every kth point for regular polygons.

Jake Lai - 6 years, 6 months ago

Log in to reply

@Jake Lai So far, for even n, and joining every other vertex, I'm getting na2(1cos(180360n))(cot360n)2\dfrac{na^2(1-\cos{(180-\frac{360}{n})})(\cot{\frac{360}{n}})}{2}

Where n is the number of sides of the reference polygon and x is the sidelength of the reference polygon.

EDIT:

If k divides n without remainder, the formula is a2n(cotki180n)(csc2(180n))(1cos(ki360n))8ki\dfrac{a^2n(cot{\frac{k_i180}{n}})(\csc^2{(\frac{180}{n})})(1-\cos{(\frac{k_i360}{n})})}{8k_i} where k is joining every kth vertex

Trevor Arashiro - 6 years, 6 months ago

What is the maximum possible points of intersection of 2 circles???

Aman Verma - 6 years, 5 months ago

For a) you can note that each intersection of diagonals inside the polygon is in fact determined by the two pairs of points that determine those diagonals; also, if you choose four points at random, whatever the set of four points it is, you can join two pair of them appropiately to construct an intersection, so the bijection tells you that the number of intersections is nC4. The number of pairs of diagonals is got to be dC2 where d is the number of diagonals which can easily be reduced to n(n-3)/2. The probability is then the quotient.

Héctor Andrés Parra Vega - 6 years, 6 months ago

(For the case of regular polygons)

Using complex numbers (esp roots of unity) can be very helpful. It is clear that we will get a regular polygon (by symmetry), and hence mainly need to find the radius / side length.

Calvin Lin Staff - 6 years, 6 months ago
×

Problem Loading...

Note Loading...

Set Loading...