Product of 4 consecutive integers

Prove that the product of 4 consecutive integers is always equal to 1 less than a perfect square

#NumberTheory

Note by Vladimir Smith
5 years, 8 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Solution posted here

-

-

-

-

-

-

-

Letxbeequaltothelowestoftheconsecutiveintegers.Then:x(x+1)(x+2)(x+3)=y21Leta=x(x+3)Letb=(x+1)(x+2)Thenab=y21Letsfindthedifferencebetweenaandb.a+c=bx2+3x+c=x2+3x+2c=2a(a+2)=y21a2+2a+1=y2(a+1)2=y2Let\quad x\quad be\quad equal\quad to\quad the\quad lowest\quad of\quad the\quad consecutive\quad integers.\quad Then:\\ x(x+1)(x+2)(x+3)\quad =\quad y^{ 2 }-1\\ Let\quad a\quad =\quad x(x+3)\\ Let\quad b\quad =\quad (x+1)(x+2)\\ Then\quad ab=y^{ 2 }-1\\ Lets\quad find\quad the\quad difference\quad between\quad a\quad and\quad b.\\ a+c=b\\ { x }^{ 2 }+3x+c\quad ={ \quad x }^{ 2 }+3x+2\\ \quad \quad \quad \quad \quad \quad c\quad =\quad 2\\ \therefore \\ \quad \quad a(a+2)\quad =\quad y^{ 2 }-1\\ { a }^{ 2 }+2a+1\quad =\quad { y }^{ 2 }\\ \quad \quad { (a+1) }^{ 2 }\quad =\quad { y }^{ 2 }

Vladimir Smith - 5 years, 8 months ago
×

Problem Loading...

Note Loading...

Set Loading...