Proof of Fresnel Integrals

We have to prove: \[\int _{ 0 }^{ \infty }{ \cos\left( { ax }^{ 2 } \right) \, dx } =\sqrt { \frac { \pi }{ 8a } } =\int _{ 0 }^{ \infty }{ \sin\left( { ax }^{ 2 } \right) \, dx } \]

Now, we consider the LHS.

LHS=0cos(ax2)dx\displaystyle LHS=\int _{ 0 }^{ \infty }{ cos\left( { ax }^{ 2 } \right) dx }

Now, we make the substitution: xx14x\rightarrow { x }^{ \frac { 1 }{ 4 } }

Therefore, we get:

LHS=140x34cos(ax)dx\displaystyle LHS=\frac { 1 }{ 4 } \int _{ 0 }^{ \infty }{ { x }^{ \frac { -3 }{ 4 } }cos\left( { a }\sqrt { x } \right) dx }

Now by Maclaurin series,

cos(ax)=n=0(1)n(ax)2n2n!\displaystyle cos\left( { a }\sqrt { x } \right) =\sum _{ n=0 }^{ \infty }{ \frac { { \left( -1 \right) }^{ n }{ \left( { a }\sqrt { x } \right) }^{ 2n } }{ 2n! } }

This can also be written as:

cos(ax)=n=0(x)n(a)2nn!2n!n!\displaystyle cos\left( { a }\sqrt { x } \right) =\sum _{ n=0 }^{ \infty }{ \frac { { \left( -x \right) }^{ n }{ \left( { a } \right) }^{ 2n }n! }{ 2n!n! } }

On plugging the value into LHS, we get:

LHS=140x34n=0(x)n(a)2nn!2n!n!dx\displaystyle LHS=\frac { 1 }{ 4 } \int _{ 0 }^{ \infty }{ { x }^{ \frac { -3 }{ 4 } }\sum _{ n=0 }^{ \infty }{ \frac { { \left( -x \right) }^{ n }{ \left( { a } \right) }^{ 2n }n! }{ 2n!n! } } dx }

Now, by Ramanujan's Master Theorem, we get

LHS=140x34n=0(x)n(a)2nn!2n!n!dx=14Γ(14)Γ(34)aΓ(12)\displaystyle LHS=\frac { 1 }{ 4 } \int _{ 0 }^{ \infty }{ { x }^{ \frac { -3 }{ 4 } }\sum _{ n=0 }^{ \infty }{ \frac { { \left( -x \right) }^{ n }{ \left( { a } \right) }^{ 2n }n! }{ 2n!n! } } dx } =\frac { 1 }{ 4 } \frac { \Gamma \left( \frac { 1 }{ 4 } \right) \Gamma \left( \frac { 3 }{ 4 } \right) }{ \sqrt { a } \Gamma \left( \frac { 1 }{ 2 } \right) }

Therefore, by Euler's Reflection Formula, we get 0cos(ax2)dx=π8a\int _{ 0 }^{ \infty }{ cos\left( { ax }^{ 2 } \right) dx } =\sqrt { \frac { \pi }{ 8a } }

Now, we consider RHS as:

I(a)=0sin(ax2)dx\displaystyle I\left( a \right) =\int _{ 0 }^{ \infty }{ sin\left( { ax }^{ 2 } \right) dx }

On differentiating both the sides wrt a, we get:

I(a)=0x2cos(ax2)dx\displaystyle I'\left( a \right) =\int _{ 0 }^{ \infty }{ { x }^{ 2 }cos\left( { ax }^{ 2 } \right) dx }

Now we make the substitution: xx14x\rightarrow { x }^{ \frac { 1 }{ 4 } }

Therefore, we get

I(a)=140x14cos(ax)dx\displaystyle I'\left( a \right) =\frac { 1 }{ 4 } \int _{ 0 }^{ \infty }{ { x }^{ \frac { -1 }{ 4 } }cos\left( { a }\sqrt { x } \right) dx }

On evaluating this integral as above, we get

I(a)=14Γ(14)Γ(34)a3Γ(12)\displaystyle I'\left( a \right) =\frac { 1 }{ 4 } \frac { \Gamma \left( \frac { 1 }{ 4 } \right) \Gamma \left( \frac { 3 }{ 4 } \right) }{ \sqrt { { a }^{ 3 } } \Gamma \left( \frac { -1 }{ 2 } \right) }

Since I(0)=0I\left( 0 \right) =0 we can directly integrate the above expression wrt a.

Therefore we get:0sin(ax2)dx=π8a\int _{ 0 }^{ \infty }{ sin\left( { ax }^{ 2 } \right) dx } =\sqrt { \frac { \pi }{ 8a } }

Hence we can conclude that 0cos(ax2)dx=π8a=0sin(ax2)dx\int _{ 0 }^{ \infty }{ cos\left( { ax }^{ 2 } \right) dx } =\sqrt { \frac { \pi }{ 8a } } =\int _{ 0 }^{ \infty }{ sin\left( { ax }^{ 2 } \right) dx } .

HENCE PROVED\text{HENCE PROVED}

ORIGINAL

#Calculus

Note by Aditya Kumar
5 years, 4 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

As I discussed with you previously concerning the Ramanujan Master Theorem, the RMT is only a formal argument (albeit one that frequently gives good results) except when the integral it is trying to evaluate is properly convergent. This is another case where this is not true. Now 0exttdt  =  20exs2ds  =  2x0es2ds  =  πx \int_0^\infty \frac{e^{-xt}}{\sqrt{t}}\,dt \; = \; 2\int_0^\infty e^{-xs^2}\,ds \; = \; \frac{2}{\sqrt{x}}\int_0^\infty e^{-s^2}\,ds \; = \; \sqrt{\frac{\pi}{x}} for x>0x > 0, and so 0Rsiny2dy=120R2sinxxdx  =  120R2sinx(0extπtdt)dx=12π01t(0R2extsinxdx)=12π01t(1+t2)[1eR2tcosR2teR2tsinR2]dt \begin{array}{rcl} \displaystyle \int_0^R \sin y^2\,dy & = & \displaystyle \frac12\int_0^{R^2} \frac{\sin x}{\sqrt{x}}\,dx \; = \; \frac12\int_0^{R^2} \sin x \left(\int_0^\infty \frac{e^{-xt}}{\sqrt{\pi t}}\,dt\right)\,dx \\ & = & \displaystyle \frac{1}{2\sqrt{\pi}}\int_0^\infty \frac{1}{\sqrt{t}}\left(\int_0^{R^2} e^{-xt} \sin x\,dx\right) \\ & = & \displaystyle \frac{1}{2\sqrt{\pi}}\int_0^\infty \frac{1}{\sqrt{t}(1+t^2)}\big[1 - e^{-R^2t}\cos R^2 - te^{-R^2t}\sin R^2\big]\,dt \end{array} All these integrals exist in a Lebesgue sense, and Fubini/Tonelli justifies reversing the order of integration. Since 1+tt(t2+1)\frac{1+t}{\sqrt{t}(t^2+1)} is Lebesgue-integrable on (0,)(0,\infty), the Dominated Convergence Theorem enables us to let RR \to \infty in the above, obtaining the improper Riemann integral 0siny2dy  =  limR0Rsiny2dy  =  12π01t(1+t2)dt  =  1π011+s4ds  =  π22  . \int_0^\infty \sin y^2\,dy \; = \; \lim_{R\to\infty} \int_0^R \sin y^2\,dy \; = \; \frac{1}{2\sqrt{\pi}} \int_0^\infty \frac{1}{\sqrt{t}(1+t^2)}\,dt \; = \; \frac{1}{\sqrt{\pi}}\int_0^\infty \frac{1}{1+s^4}\,ds \; = \; \frac{\sqrt{\pi}}{2\sqrt{2}} \;. A similar argument works for the cosine. Adding the positive term aa is achieved by a trivial change of variable.

Mark Hennings - 5 years, 4 months ago

Log in to reply

Ooh so I needed to prove that it coverages when R tends to infinity.

Aditya Kumar - 5 years, 4 months ago

Log in to reply

Yes. What everyone means (but rarely makes explicit) when they write 0siny2dy \int_0^\infty \sin y^2\,dy is the limit of the integral from 00 to RR. That is the only way that Riemann integration can define integrals to infinity. Lebesgue integration can define integrals on infinite integrals as easily as it can on finite ones. The function siny2\sin y^2 is not Lebesgue integrable on (0,)(0,\infty), and that is where the difficulties come in...

Mark Hennings - 5 years, 4 months ago

Log in to reply

@Mark Hennings I'll make sure to prove it next time onwards. Thanks!

Aditya Kumar - 5 years, 4 months ago

Contour integration is another method. :D for proving this

Aman Rajput - 5 years, 4 months ago

Log in to reply

Indeed. Integrating around the "octant" contour comprising

  • the straight line from 00 to RR,
  • the circular arc z=ReIθz = Re^{I\theta} for 0θ14π0 \le \theta \le \tfrac14\pi,
  • the straight line from 12R(1+i)\tfrac1{\sqrt{2}}R(1+i) back to 00

and letting RR \to \infty gives us limR0Reix2dx  =  1+i20ex2dx  =  (1+i)π22 \lim_{R\to\infty} \int_0^R e^{ix^2}\,dx \; = \; \frac{1+i}{\sqrt{2}}\int_0^\infty e^{-x^2}\,dx \; = \; \frac{(1+i)\pi}{2\sqrt{2}} which does the trick. Showing that the integral around the circular arc tends to zero is not straightforward, though. If z=Reiθz = Re^{i\theta} then eiz2=eR2sin2θ    e4πR2θ\big|e^{iz^2}\big| \,=\, e^{-R^2\sin2\theta} \; \le \; e^{-\frac{4}{\pi}R^2\theta} for 0θ14π0 \le \theta \le \tfrac14\pi, and this makes the integral along the curved arc O(R1)O(R^{-1}).

Mark Hennings - 5 years, 4 months ago

Log in to reply

yes , correct !

Aman Rajput - 5 years, 4 months ago

Please explain me the step after RMT and before Euler’s reflection formula

Abhishek Keripale - 3 years, 8 months ago
×

Problem Loading...

Note Loading...

Set Loading...