Proof Practice-I

Proof the following\text {Proof the following}

\bullet Given any positive integer k\displaystyle k ,prove that there are k\displaystyle k consecutive integers that are all composite.

#NumberTheory

Note by Anik Mandal
6 years, 3 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

One line proof. (k+1)!+i (k+1)! + i where 2ik+1 2 \leq i \leq k+1

Siddhartha Srivastava - 6 years, 3 months ago

Log in to reply

Sorry,I didn't get it.Please explain it clearly@Siddhartha Srivastava

Anik Mandal - 6 years, 3 months ago

Log in to reply

If u know factorial notation then notice that for each $i$ that same $i$ from factorial expansion will come out common and the expression will be composite.

Dinesh Chavan - 6 years, 3 months ago

Expanding on what Dinesh Chavan said. (k+1)!=(k+1)k(k1)...432 (k+1)! = (k+1)*k*(k-1)...*4*3*2 . So for each 2ik+1 2 \leq i \leq k+1 , we see that i(k+1)! i|(k+1)! . Also, it is trivially true that ii i|i . Therefore, i(k+1)!+i i| (k+1)! + i . Since i i divides the number and it is greater than one, the number must be composite.

Siddhartha Srivastava - 6 years, 3 months ago
×

Problem Loading...

Note Loading...

Set Loading...