Proof Problem

Let xx be a real number such that x+x1x + x^{-1} is an integer. Prove that xn+xnx ^n + x^{-n} is an integer, for all positive integer nn.

#Algebra

Note by Dev Sharma
5 years, 8 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

It's probably easiest to use strong induction. The statement is given for n=1.n = 1. Now suppose xk+xkx^{k} + x^{-k} is an integer for all kn.k \le n. We have that

(xn+1xn)(x+1x)=xn+1+1xn1+xn1+1xn+1\left(x^{n} + \dfrac{1}{x^{n}}\right) \left(x + \dfrac{1}{x}\right) = x^{n+1} + \dfrac{1}{x^{n-1}} + x^{n-1} + \dfrac{1}{x^{n+1}}

xn+1+1xn+1=(xn+1xn)(x+1x)(xn1+1xn1),\Longrightarrow x^{n+1} + \dfrac{1}{x^{n+1}} = \left(x^{n} + \dfrac{1}{x^{n}}\right)\left(x + \dfrac{1}{x}\right) - \left(x^{n-1} + \dfrac{1}{x^{n-1}}\right),

which is an integer by the induction assumption. This completes the proof by strong induction.

Brian Charlesworth - 5 years, 8 months ago

Log in to reply

nice

Dev Sharma - 5 years, 8 months ago

Nice one sir :)

Thanks for the proof :)

Mehul Arora - 5 years, 8 months ago
×

Problem Loading...

Note Loading...

Set Loading...