Let the two points be labelled \(A\) and \(B\) and have coordinates \((a,y(a))\) and \((b,y(b))\). The length of an element of path \(ds\) is given by \[ds=\sqrt{dx^2+dy^2} = \sqrt{1+y'^2}\;dx \] and hence the total path length is given by \[ L=\int_a^b{ \sqrt{1+y'^2}} \;dx. \] The Euler-Lagrange equation \[\frac{\partial F}{\partial y} = \frac{d}{dx}\left(\frac{\partial F}{\partial y'} \right)\] can be rearranged to \[\frac{\partial F}{\partial y'} = \mathrm{const.} \] since \( F= \sqrt{1+y'^2} \) does not contain \(y\) explicity. We can now differentiate \(F\) and set it to a constant value. \[ k=\frac{\partial F}{\partial y'} = \frac{y'}{\sqrt{1+y'^2}} \] \[ k^2(1+y'^2) = y'^2\] \[ k^2 = y'^2-k^2y'^2 = y'^2(1-k^2) \] \[ \Rightarrow y'=\frac{k}{\sqrt{1-k^2}} \] Integration gives \[ y(x) = \frac{k}{\sqrt{1-k^2}}x+c\ \] which, as expected, is the equation of a straight line in the form \( y=mx+c \). \[\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\Box.\]
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
You should mention that the curve is confined to a plane. Such curves are called geodesics, and have different shapes on different surfaces. On the surface of a sphere for example, it is the great circle of the sphere. As you are including x and y only, it refers to a plane curve.