Question 1
Calculate the attenuation constant and the phase constant for an incident voltage wave in a two wire transmission line with the following parameters:
\(f= 4.00\) MHz, \( R= 25.0 m\Omega/m\), \( L=2.00 \mu H/m\), \(C=5.56 pF/m\) and \(G=1.00fS/m\).
Find the magnitude of the propagation constant γ \gamma γ using the given parameters of the transmission line.
γ 2 = ( R + j ω L ) ( G + j ω C ) \gamma^{2} = (R+j\omega L)(G+j\omega C) γ 2 = ( R + j ω L ) ( G + j ω C )
γ 2 = R G + j ω R C + j ω G L + j 2 ω 2 L C \gamma^{2} = RG + j\omega RC + j\omega GL + j^{2}\omega^{2}LC γ 2 = R G + j ω R C + j ω G L + j 2 ω 2 L C
γ 2 = ( R G − ω 2 L C ) + j ( ω R C + ω G L ) \gamma^{2} = (RG -\omega^{2}LC) + j(\omega RC + \omega GL) γ 2 = ( R G − ω 2 L C ) + j ( ω R C + ω G L )
Since G G G is so small we can say in this case that G = 0 G=0 G = 0 and get rid of any terms that are multiplied by G G G .
γ 2 = ( − ω 2 L C ) + j ( ω R C ) \gamma^{2} = (-\omega^{2}LC) + j(\omega RC) γ 2 = ( − ω 2 L C ) + j ( ω R C )
γ 2 = ( − ( 8 π × 1 0 6 ) 2 × 2 × 1 0 − 6 × 5.56 × 1 0 − 12 ) + j ( 8 π × 1 0 6 × 25 × 1 0 − 3 × 5.56 × 1 0 − 12 ) \gamma^{2} = ( -(8\pi \times 10^{6})^{2}\times 2 \times 10^{-6} \times 5.56 \times 10^{-12}) + j(8 \pi \times 10^6 \times 25 \times 10^{-3} \times 5.56 \times 10^{-12}) γ 2 = ( − ( 8 π × 1 0 6 ) 2 × 2 × 1 0 − 6 × 5 . 5 6 × 1 0 − 1 2 ) + j ( 8 π × 1 0 6 × 2 5 × 1 0 − 3 × 5 . 5 6 × 1 0 − 1 2 )
γ 2 = − 7.02 × 1 0 − 3 + j 3.49 × 1 0 − 6 \gamma^{2}= -7.02 \times 10^{-3} + j 3.49\times 10^{-6} γ 2 = − 7 . 0 2 × 1 0 − 3 + j 3 . 4 9 × 1 0 − 6
γ 2 = ( − 7.02 × 1 0 − 3 ) 2 + ( 3.49 × 1 0 − 6 ) 2 ∠ tan − 1 ( 3.49 × 1 0 − 6 − 7.02 × 1 0 − 3 ) \gamma^{2}= \sqrt{(-7.02 \times 10^{-3})^{2} + (3.49 \times 10^{-6})^{2}} \angle \tan^{-1} (\frac{3.49 \times 10^{-6}}{-7.02 \times 10^{-3}}) γ 2 = ( − 7 . 0 2 × 1 0 − 3 ) 2 + ( 3 . 4 9 × 1 0 − 6 ) 2 ∠ tan − 1 ( − 7 . 0 2 × 1 0 − 3 3 . 4 9 × 1 0 − 6 )
γ 2 = 7.02 × 1 0 − 3 ∠ 179.971503 4 ∘ \gamma^{2}= 7.02 \times 10^{-3} \angle 179.9715034^{\circ} γ 2 = 7 . 0 2 × 1 0 − 3 ∠ 1 7 9 . 9 7 1 5 0 3 4 ∘
γ = 7.02 × 1 0 − 3 ∠ 179.971503 4 ∘ 2 \gamma= \sqrt{ 7.02 \times 10^{-3}} \angle \frac{179.9715034^{\circ}}{2} γ = 7 . 0 2 × 1 0 − 3 ∠ 2 1 7 9 . 9 7 1 5 0 3 4 ∘
γ = 83.8 × 1 0 − 3 ∠ 89.9857517 0 ∘ \gamma= 83.8 \times 10^{-3} \angle 89.98575170^{\circ} γ = 8 3 . 8 × 1 0 − 3 ∠ 8 9 . 9 8 5 7 5 1 7 0 ∘
Separate the propagation constant γ \gamma γ into its real and imaginary parts.
γ = α + j β \gamma = \alpha + j \beta γ = α + j β
The real part α \alpha α is the attenuation constant.
α = R e [ γ ] \alpha= Re[\gamma] α = R e [ γ ]
α = ∣ γ ∣ cos ( γ ϕ ) \alpha = |\gamma| \cos(\gamma_{\phi}) α = ∣ γ ∣ cos ( γ ϕ )
α = 83.8 × 1 0 − 3 × cos ( 89.9857517 0 ∘ ) \alpha= 83.8 \times 10^{-3} \times \cos (89.98575170^{\circ}) α = 8 3 . 8 × 1 0 − 3 × cos ( 8 9 . 9 8 5 7 5 1 7 0 ∘ )
α = 20.8 μ N p / m \alpha = 20.8 \mu Np/m α = 2 0 . 8 μ N p / m
The imaginary part β \beta β is the phase constant.
β = I m [ γ ] \beta= Im[\gamma] β = I m [ γ ]
β = ∣ γ ∣ sin ( γ ϕ ) \beta=|\gamma| \sin(\gamma_{\phi}) β = ∣ γ ∣ sin ( γ ϕ )
β = 2.65 × 1 0 − 3 × sin ( 89.9857517 0 ∘ ) \beta= 2.65 \times 10^{-3} \times \sin (89.98575170^{\circ}) β = 2 . 6 5 × 1 0 − 3 × sin ( 8 9 . 9 8 5 7 5 1 7 0 ∘ )
β = 83.8 m r a d / m \beta= 83.8 mrad/m β = 8 3 . 8 m r a d / m
Question 2
Calculate the characteristic impedance of the transmission line in polar form given the following parameters:
R = 25.0 m Ω / m R= 25.0 m\Omega/m R = 2 5 . 0 m Ω / m , L = 2.00 μ H / m L=2.00 \mu H/m L = 2 . 0 0 μ H / m , C = 5.56 p F / m C=5.56 pF/m C = 5 . 5 6 p F / m and G = 1.00 f S / m G=1.00fS/m G = 1 . 0 0 f S / m .
Since G G G is so small we can say in this case that G = 0 G=0 G = 0 and get rid of any terms that include G G G . If we encounter something like tan − 1 ( ω C G ) \tan^{-1}(\frac{\omega C}{G}) tan − 1 ( G ω C ) We can say that this tan inverse will be equal to 90 degrees.
a) f = 2.00 f= 2.00 f = 2 . 0 0 kHz
b) f = 20.0 f=20.0 f = 2 0 . 0 MHz
Z o = R + j ω L G + j ω C Z_{o}= \sqrt{\frac{R+j\omega L}{G+j\omega C}} Z o = G + j ω C R + j ω L
Z o = R 2 + ( ω L ) 2 ∠ tan − 1 ( ω L R ) G 2 + ( ω C ) 2 ∠ tan − 1 ( ω C G ) Z_{o}= \sqrt{\frac{\sqrt{R^{2}+(\omega L)^{2}} \angle \tan^{-1}(\frac{\omega L}{R})}{\sqrt{G^{2}+(\omega C)^{2}} \angle \tan^{-1}(\frac{\omega C}{G})}} Z o = G 2 + ( ω C ) 2 ∠ tan − 1 ( G ω C ) R 2 + ( ω L ) 2 ∠ tan − 1 ( R ω L )
Z o = R 2 + ( ω L ) 2 G 2 + ( ω C ) 2 ∠ tan − 1 ( ω L R ) − tan − 1 ( ω C G ) 2 Z_{o}= \sqrt{\frac{\sqrt{R^{2}+(\omega L)^{2}}}{\sqrt{G^{2}+(\omega C)^{2}}}} \angle \frac{\tan^{-1}(\frac{\omega L}{R})-\tan^{-1}(\frac{\omega C}{G})}{2} Z o = G 2 + ( ω C ) 2 R 2 + ( ω L ) 2 ∠ 2 tan − 1 ( R ω L ) − tan − 1 ( G ω C )
a) For the case when f = 2.00 f= 2.00 f = 2 . 0 0 kHz:
Find the magnitude of the characteristic impedance Z o Z_{o} Z o using the given parameters for the transmission line.
∣ Z o ∣ = R 2 + ( ω L ) 2 G 2 + ( ω C ) 2 |Z_{o}|= \sqrt{\frac{\sqrt{R^{2}+(\omega L)^{2}}}{\sqrt{G^{2}+(\omega C)^{2}}}} ∣ Z o ∣ = G 2 + ( ω C ) 2 R 2 + ( ω L ) 2
∣ Z o ∣ = ( 2.5 × 1 0 − 3 ) 2 + ( 4 × π × 1 0 3 × 2 × 1 0 − 6 ) 2 ( 4 × π × 1 0 3 × 5.56 × 1 0 − 12 ) 2 |Z_{o}|= \sqrt{\frac{\sqrt{(2.5 \times 10^{-3})^{2}+(4 \times \pi \times 10^{3} \times 2 \times 10^{-6})^{2}}}{\sqrt{(4 \times \pi \times 10^{3} \times 5.56 \times 10^{-12})^{2}}}} ∣ Z o ∣ = ( 4 × π × 1 0 3 × 5 . 5 6 × 1 0 − 1 2 ) 2 ( 2 . 5 × 1 0 − 3 ) 2 + ( 4 × π × 1 0 3 × 2 × 1 0 − 6 ) 2
∣ Z o ∣ = 712 Ω |Z_{o}|= 712 \Omega ∣ Z o ∣ = 7 1 2 Ω
Find the phase angle of the characteristic impedance Z o Z_{o} Z o using the given parameters for the transmission line.
Z o ∠ = tan − 1 ( ω L R ) − tan − 1 ( ω C G ) 2 Z_{o} \angle = \frac{\tan^{-1}(\frac{\omega L}{R})-\tan^{-1}(\frac{\omega C}{G})}{2} Z o ∠ = 2 tan − 1 ( R ω L ) − tan − 1 ( G ω C )
Z o ∠ = tan − 1 ( 4 × π × 1 0 3 × 2 × 1 0 − 6 2.5 × 1 0 − 3 ) − tan − 1 ( 4 × π × 1 0 3 × 5.56 × 1 0 − 12 0 ) 2 Z_{o} \angle = \frac{\tan^{-1}(\frac{4 \times \pi \times 10^{3}\times 2 \times 10^{-6}}{2.5 \times 10^{-3}})-\tan^{-1}(\frac{4 \times \pi \times 10^{3} \times 5.56 \times 10^{-12}}{0})}{2} Z o ∠ = 2 tan − 1 ( 2 . 5 × 1 0 − 3 4 × π × 1 0 3 × 2 × 1 0 − 6 ) − tan − 1 ( 0 4 × π × 1 0 3 × 5 . 5 6 × 1 0 − 1 2 )
Z o ∠ = − 22. 4 ∘ Z_{o} \angle =-22.4^{\circ} Z o ∠ = − 2 2 . 4 ∘
b) For the case when f = 20.00 f= 20.00 f = 2 0 . 0 0 MHz:
Find the magnitude of the characteristic impedance Z o Z_{o} Z o using the given parameters for the transmission line.
∣ Z o ∣ = R 2 + ( ω L ) 2 G 2 + ( ω C ) 2 |Z_{o}|= \sqrt{\frac{\sqrt{R^{2}+(\omega L)^{2}}}{\sqrt{G^{2}+(\omega C)^{2}}}} ∣ Z o ∣ = G 2 + ( ω C ) 2 R 2 + ( ω L ) 2
∣ Z o ∣ = ( 2.5 × 1 0 − 3 ) 2 + ( 40 × π × 1 0 6 × 2 × 1 0 − 6 ) 2 ( 40 × π × 1 0 6 × 5.56 × 1 0 − 12 ) 2 |Z_{o}|= \sqrt{\frac{\sqrt{(2.5 \times 10^{-3})^{2}+(40 \times \pi \times 10^{6} \times 2 \times 10^{-6})^{2}}}{\sqrt{(40 \times \pi \times 10^{6} \times 5.56 \times 10^{-12})^{2}}}} ∣ Z o ∣ = ( 4 0 × π × 1 0 6 × 5 . 5 6 × 1 0 − 1 2 ) 2 ( 2 . 5 × 1 0 − 3 ) 2 + ( 4 0 × π × 1 0 6 × 2 × 1 0 − 6 ) 2
∣ Z o ∣ = 600 Ω |Z_{o}|= 600 \Omega ∣ Z o ∣ = 6 0 0 Ω
Find the phase angle of the characteristic impedance Z o Z_{o} Z o using the given parameters for the transmission line.
Z o ∠ = tan − 1 ( ω L R ) − tan − 1 ( ω C G ) 2 Z_{o} \angle = \frac{\tan^{-1}(\frac{\omega L}{R})-\tan^{-1}(\frac{\omega C}{G})}{2} Z o ∠ = 2 tan − 1 ( R ω L ) − tan − 1 ( G ω C )
Z o ∠ = tan − 1 ( 40 × π × 1 0 6 × 2 × 1 0 − 6 25 × 1 0 − 3 ) − tan − 1 ( 40 × π × 1 0 6 × 5.56 × 1 0 − 12 0 ) 2 Z_{o} \angle = \frac{\tan^{-1}(\frac{40 \times \pi \times 10^{6}\times 2 \times 10^{-6}}{25 \times 10^{-3}})-\tan^{-1}(\frac{40 \times \pi \times 10^{6} \times 5.56 \times 10^{-12}}{0})}{2} Z o ∠ = 2 tan − 1 ( 2 5 × 1 0 − 3 4 0 × π × 1 0 6 × 2 × 1 0 − 6 ) − tan − 1 ( 0 4 0 × π × 1 0 6 × 5 . 5 6 × 1 0 − 1 2 )
Z o ∠ = ( − 2.85 × 1 0 − 3 ) ∘ Z_{o} \angle = (-2.85 \times 10^{-3})^{\circ} Z o ∠ = ( − 2 . 8 5 × 1 0 − 3 ) ∘
Question 3
A transmission line has the following parameters:
f = 1.00 f= 1.00 f = 1 . 0 0 kHz, R = 4.00 m Ω / m R= 4.00 m\Omega/m R = 4 . 0 0 m Ω / m , L = 3.00 μ H / m L=3.00 \mu H/m L = 3 . 0 0 μ H / m , C = 15.0 p F / m C=15.0 pF/m C = 1 5 . 0 p F / m and G = 1.00 n S / m G=1.00 nS/m G = 1 . 0 0 n S / m .
a) Calculate the distance from the source at which the signal drops to 75% of its amplitude at the sending end.
b) Calculate the velocity at which the signal travels along the line.
Find the magnitude of the propagation constant γ \gamma γ using the given parameters of the transmission line.
∣ γ ∣ = ( R G − ω 2 L C ) 2 + ( ω R C + ω G L ) 2 |\gamma|= \sqrt{\sqrt{(RG -\omega^{2}LC)^{2} + (\omega RC + \omega GL)^{2}}} ∣ γ ∣ = ( R G − ω 2 L C ) 2 + ( ω R C + ω G L ) 2
∣ γ ∣ = ( 4 × 1 0 − 3 × 1 0 − 9 − 4 × 1 0 6 × π 2 × 3 × 1 0 − 6 × 15 × 1 0 − 12 ) 2 + ( 2 × 1 0 3 × π [ 4 × 1 0 − 3 × 15 × 1 0 − 12 + 1 0 − 9 × 3 × 1 0 − 6 ] ) 2 |\gamma|= \sqrt{\sqrt{(4 \times 10^{-3} \times 10^{-9} - 4 \times 10^{6} \times \pi^{2}\times 3 \times 10^{-6} \times 15 \times 10^{-12})^{2} + (2 \times 10^{3} \times\pi [4 \times 10^{-3} \times 15 \times 10^{-12} + 10^{-9} \times 3 \times 10^{-6}])^{2}}} ∣ γ ∣ = ( 4 × 1 0 − 3 × 1 0 − 9 − 4 × 1 0 6 × π 2 × 3 × 1 0 − 6 × 1 5 × 1 0 − 1 2 ) 2 + ( 2 × 1 0 3 × π [ 4 × 1 0 − 3 × 1 5 × 1 0 − 1 2 + 1 0 − 9 × 3 × 1 0 − 6 ] ) 2
∣ γ ∣ = 42.6 × 1 0 − 6 |\gamma|= 42.6 \times 10^{-6} ∣ γ ∣ = 4 2 . 6 × 1 0 − 6
Find the phase angle of the propagation constant γ \gamma γ using the given parameters for the transmission line.
γ ϕ = t a n − 1 ( ω R C + ω G L R G − ω 2 L C ) 2 \gamma_{\phi} =\frac{tan^{-1}(\frac{\omega RC + \omega GL}{RG-\omega^{2} LC})}{2} γ ϕ = 2 t a n − 1 ( R G − ω 2 L C ω R C + ω G L )
γ ϕ = t a n − 1 ( 2 × 1 0 3 × π × 4 × 1 0 − 3 × 15 × 1 0 − 12 + 2 × 1 0 3 × π × 1 0 − 9 × 3 × 1 0 − 6 4 × 1 0 − 3 × 1 0 − 9 − 4 × 1 0 6 × π 2 × 3 × 1 0 − 6 × 15 × 1 0 − 12 ) 2 \gamma_{\phi} =\frac{tan^{-1}(\frac{2\times 10^{3}\times \pi \times 4 \times 10^{-3} \times 15 \times 10^{-12} + 2\times 10^{3}\times \pi \times 10^{-9}\times 3\times 10^{-6}}{4\times 10^{-3}\times10^{-9}-4 \times 10^{6} \times \pi^{2}\times 3 \times 10^{-6} \times 15 \times 10^{-12}})}{2} γ ϕ = 2 t a n − 1 ( 4 × 1 0 − 3 × 1 0 − 9 − 4 × 1 0 6 × π 2 × 3 × 1 0 − 6 × 1 5 × 1 0 − 1 2 2 × 1 0 3 × π × 4 × 1 0 − 3 × 1 5 × 1 0 − 1 2 + 2 × 1 0 3 × π × 1 0 − 9 × 3 × 1 0 − 6 )
γ ϕ = 83. 7 ∘ \gamma_{\phi}= 83.7^{\circ} γ ϕ = 8 3 . 7 ∘
Separate the propagation constant γ \gamma γ into its real and imaginary parts.
γ = α + j β \gamma = \alpha + j \beta γ = α + j β
The real part α \alpha α is the attenuation constant.
α = R e [ γ ] \alpha= Re[\gamma] α = R e [ γ ]
α = ∣ γ ∣ cos ( γ ϕ ) \alpha = |\gamma| \cos(\gamma_{\phi}) α = ∣ γ ∣ cos ( γ ϕ )
α = 42.6 × 1 0 − 6 × cos ( 83. 7 ∘ ) \alpha= 42.6 \times 10^{-6} \times \cos (83.7^{\circ}) α = 4 2 . 6 × 1 0 − 6 × cos ( 8 3 . 7 ∘ )
α = 4.67 μ N p / m \alpha = 4.67 \mu Np/m α = 4 . 6 7 μ N p / m
The imaginary part β \beta β is the phase constant.
β = I m [ γ ] \beta= Im[\gamma] β = I m [ γ ]
β = ∣ γ ∣ sin ( γ ϕ ) \beta=|\gamma| \sin(\gamma_{\phi}) β = ∣ γ ∣ sin ( γ ϕ )
β = 42.6 × 1 0 − 6 × sin ( 83. 7 ∘ ) \beta= 42.6 \times 10^{-6} \times \sin (83.7^{\circ}) β = 4 2 . 6 × 1 0 − 6 × sin ( 8 3 . 7 ∘ )
β = 42.3 μ r a d / m \beta= 42.3 \mu rad/m β = 4 2 . 3 μ r a d / m
a) Calculate the distance from the source at which the signal drops to 75% of its amplitude at the sending end.
0.75 = e − α z 0.75 = e^{-\alpha z} 0 . 7 5 = e − α z
l n ( 0.75 ) = − α z ln(0.75) = -\alpha z l n ( 0 . 7 5 ) = − α z
l n ( 0.75 ) = − α z ln(0.75) = -\alpha z l n ( 0 . 7 5 ) = − α z
z = − l n ( 0.75 ) α z=- \frac{ln(0.75)}{\alpha} z = − α l n ( 0 . 7 5 )
z = − l n ( 0.75 ) 4.67 × 1 0 − 6 z=- \frac{ln(0.75)}{4.67 \times 10^{-6}} z = − 4 . 6 7 × 1 0 − 6 l n ( 0 . 7 5 )
z = 61.6 k m z= 61.6 km z = 6 1 . 6 k m
b) Calculate the velocity at which the signal travels along the line.
μ p = ω β \mu_{p} = \frac{\omega}{\beta} μ p = β ω
μ p = 2 × 1 0 3 × π 42.3 × 1 0 − 3 \mu_{p} = \frac{2 \times 10^{3}\times \pi}{42.3 \times 10^{-3}} μ p = 4 2 . 3 × 1 0 − 3 2 × 1 0 3 × π
μ p = 2 × 1 0 3 × π 42.3 × 1 0 − 3 \mu_{p} = \frac{2 \times 10^{3}\times \pi}{42.3 \times 10^{-3}} μ p = 4 2 . 3 × 1 0 − 3 2 × 1 0 3 × π
μ p = 148 × 1 0 6 m / s \mu_{p} = 148 \times 10^{6} m/s μ p = 1 4 8 × 1 0 6 m / s
μ p = 1.48 × 1 0 8 m / s \mu_{p} = 1.48 \times 10^{8} m/s μ p = 1 . 4 8 × 1 0 8 m / s
#ElectricityAndMagnetism
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
There are no comments in this discussion.