This discussion board is a place to discuss our Daily Challenges and the math and science
related to those challenges. Explanations are more than just a solution — they should
explain the steps and thinking strategies that you used to obtain the solution. Comments
should further the discussion of math and science.
When posting on Brilliant:
Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.
Markdown
Appears as
*italics* or _italics_
italics
**bold** or __bold__
bold
- bulleted - list
bulleted
list
1. numbered 2. list
numbered
list
Note: you must add a full line of space before and after lists for them to show up correctly
# I indented these lines
# 4 spaces, and now they show
# up as a code block.
print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.
print "hello world"
Math
Appears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3
2×3
2^{34}
234
a_{i-1}
ai−1
\frac{2}{3}
32
\sqrt{2}
2
\sum_{i=1}^3
∑i=13
\sin \theta
sinθ
\boxed{123}
123
Comments
Let us assume √2 is a rational number
Then it can expressed in the form of p/q where p and q are integers and q is not equal to 0
√2=p/q
Cancelling common factors
√2=a/b where a and b are co primes
Squaring on both sides
2=a square/ b square
2/b square= a square. .... (1)
2 divides a square
Therefore 2 divides a
a=2c for some integer c
Putting a = 2c in (1)
We get 2b square = 4c square
2 divides b square
2 divides b
Therefore a and b have at least 2 as their common factors
Therefore a and b are not co prime
So, this contradiction has arisen due to our wrong assumption
√2 is irrational
Let us assume √2 is a rational number Then it can expressed in the form of p/q where p and q are integers and q is not equal to 0 √2=p/q Cancelling common factors √2=a/b where a and b are co primes Squaring on both sides 2=a square/ b square 2/b square= a square. .... (1) 2 divides a square Therefore 2 divides a a=2c for some integer c Putting a = 2c in (1) We get 2b square = 4c square 2 divides b square 2 divides b Therefore a and b have at least 2 as their common factors Therefore a and b are not co prime So, this contradiction has arisen due to our wrong assumption √2 is irrational
Firstly we have to know the definition of rational number. If we can write a number in the form p/ q, where p& q are integer and q>0. Then we can assure that is an rational number . Otherwise it is an iretional number.
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
Let us assume √2 is a rational number Then it can expressed in the form of p/q where p and q are integers and q is not equal to 0 √2=p/q Cancelling common factors √2=a/b where a and b are co primes Squaring on both sides 2=a square/ b square 2/b square= a square. .... (1) 2 divides a square Therefore 2 divides a a=2c for some integer c Putting a = 2c in (1) We get 2b square = 4c square 2 divides b square 2 divides b Therefore a and b have at least 2 as their common factors Therefore a and b are not co prime So, this contradiction has arisen due to our wrong assumption √2 is irrational
Simply by long method of finding square root...we will find that the result is neither terminating nor repeating.
Log in to reply
Really how so?
what will be the value of 1
Log in to reply
What is 1 amit majumdar
Let us assume √2 is a rational number Then it can expressed in the form of p/q where p and q are integers and q is not equal to 0 √2=p/q Cancelling common factors √2=a/b where a and b are co primes Squaring on both sides 2=a square/ b square 2/b square= a square. .... (1) 2 divides a square Therefore 2 divides a a=2c for some integer c Putting a = 2c in (1) We get 2b square = 4c square 2 divides b square 2 divides b Therefore a and b have at least 2 as their common factors Therefore a and b are not co prime So, this contradiction has arisen due to our wrong assumption √2 is irrational
Log in to reply
copied!!! at your own risk
Firstly we have to know the definition of rational number. If we can write a number in the form p/ q, where p& q are integer and q>0. Then we can assure that is an rational number . Otherwise it is an iretional number.