Prove S(n)S(n) is divisible by 13

Prove that the sum S(n)=14n+2+24n+2+34n+2+44n+2+54n+2+64n+2\large S(n) = 1^{4n+2} + 2^{4n+2} + 3^{4n+2} + 4^{4n+2} + 5^{4n+2} + 6^{4n+2} is divisible by 13 for all positive integer nn.

#NumberTheory

Note by Aymen Hafeez
5 years, 5 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Consider modulo 13 a14n+21(14)n1(1)n(mod13)24n+24(24)n4(3)n(mod13)33n+29(34)n4(3)n(mod13)44n+216(44)n3(9)n(mod13)54n+225(54)n1(1)n(mod13)64n+236(64)n3(9)n(mod13)\begin{array}{c}a 1^{4n+2}&\equiv &1(1^4)^n &\equiv&1(1)^n&\pmod{13}\\ 2^{4n+2}&\equiv &4(2^4)^n &\equiv &4(3)^n&\pmod{13}\\ 3^{3n+2}&\equiv &9(3^4)^n &\equiv &-4(3)^n&\pmod{13}\\ 4^{4n+2}&\equiv &16(4^4)^n&\equiv&3(9)^n &\pmod{13}\\ 5^{4n+2}&\equiv &25(5^4)^n&\equiv &-1(1)^n&\pmod{13}\\ 6^{4n+2}&\equiv &36(6^4)^n&\equiv &-3(9)^n&\pmod{13} \end{array} add them up to get zero

Aareyan Manzoor - 5 years, 5 months ago

wemayrewriteS(n)as12(2n+1)+22(2n+1)+32(2n+1)....upto62(2n+1)=12n+1+42n+1+92n+1.....upto362n+1nowusingthepropertythatan+bnisalwaysdivisiblebya+bwhennisoddandalsothefactthat2n+1isalwaysodd.12n+1+252n+1isdivisibleby26andhence13(i)42n+1+92n+1isdivisibleby13(ii)362n+1+162n+1isdivisibleby52andhence13(iii)addingtheequationsupweget12n+1+42n+1....upto362n+1orinotherwordsS(n)willalwaysbedivisibleby13forpositiveintegernhenceproved.we\quad may\quad rewrite\quad S(n)\quad as\\ { 1 }^{ 2(2n+1) }\quad +\quad { 2 }^{ 2(2n+1) }\quad +\quad { 3 }^{ 2(2n+1) }\quad ....\quad upto\quad { 6 }^{ 2(2n+1) }\\ =\quad { 1 }^{ 2n+1 }\quad +\quad { 4 }^{ 2n+1 }\quad +\quad { 9 }^{ 2n+1 }\quad .....\quad upto\quad { 36 }^{ 2n+1 }\\ \\ now\quad using\quad the\quad property\quad that\quad a^ n\quad +\quad b^ n\quad is\quad always\quad divisible\quad by\quad a\quad +\quad b\quad when\quad n\quad is\quad odd\quad \\ and\quad also\quad the\quad fact\quad that\quad 2n+1\quad is\quad always\quad odd.\\ { 1 }^{ 2n+1 }\quad +\quad { 25 }^{ 2n+1 }\quad is\quad divisible\quad by\quad 26\quad and\quad hence\quad 13\quad -\quad (i)\\ { 4 }^{ 2n+1 }\quad +\quad { 9 }^{ 2n+1 }\quad is\quad divisible\quad by\quad 13-\quad (ii)\\ { 36 }^{ 2n+1 }\quad +\quad { 16 }^{ 2n+1 }\quad is\quad divisible\quad by\quad 52\quad and\quad hence\quad 13\quad -\quad (iii)\\ \quad adding\quad the\quad equations\quad up\quad we\quad get\quad \\ { 1 }^{ 2n+1 }\quad +\quad { 4 }^{ 2n+1 }....\quad upto\quad { 36 }^{ 2n+1 }\quad or\quad in\quad other\quad words\quad S(n)\quad will\quad always\quad be\quad divisible\quad by\quad 13\quad for\quad positive\quad integer\quad n\\ \\ hence\quad proved.\\

Shreyash Rai - 5 years, 4 months ago

Log in to reply

A pretty easy and awesome solution!

Adarsh Kumar - 5 years, 4 months ago

Log in to reply

Thanks!

Shreyash Rai - 5 years, 4 months ago
×

Problem Loading...

Note Loading...

Set Loading...