Prove the following expression

The equation acos2θ+bsin2θ=c a \cos 2\theta + b \sin2\theta = c has 2 roots (of θ\theta): α\alpha and β\beta. Prove that tan(α+β)=ba \tan(\alpha + \beta) = \dfrac ba.

#Geometry

Note by Pritthijit Nath
5 years ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

I think the answer should be a/b instead of b/a. !

Proceed as follows:-

Let the eq.n be :→ a(cos2p) + b(sin2p) = c (just for convenience in writing)

Now we substitute,

x = tan(p)

So that,

Sin2p = 2x/(1+x^2) &

Cos2p = (1-x^2)/(1+x^2)

Now our eq.n reduces to→

a [2x/(1+x^2)] + b [(1-x^2)/(1+x^2)] =c

On further simplification u get a quadratic eq. in x as follows→

(b+c)•x^2 - 2ax + c-b = 0

Now let the two roots be tanA & tanB,

Then by vieta's formulae,

TanA + TanB = 2a/(b+c) &

TanA●TanB = (c-b)/(c+b)

Now use the formula of Tan (A+B)→

Tan (A+B) = (TanA + TanB)/(1-TanA●TanB)

To get→

| Tan(A+B) = a/b |★ ( Ans.)

Please feel free to correct and suggest me wherever im wrong ...

Thank you.!

Rishabh Tiwari - 5 years ago
×

Problem Loading...

Note Loading...

Set Loading...