Prove this inequality

If a,ba,b and cc are distinct positive numbers, prove that a2+b2+c2>(a+b+c)24a^2 + b^2 + c^2 > \dfrac {(a+b+c)^2}4 .

#Algebra

Note by Monishwaran Maheswaran
4 years, 11 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Just a direct application of Titu's lemma.

a21+b21+c21>(a+b+c)23\dfrac{a^2}1+\dfrac{b^2}1+\dfrac{c^2}1>\dfrac{(a+b+c)^2}{3}

Now since (a+b+c)23>(a+b+c)24\dfrac{(a+b+c)^2}{3}>\dfrac{(a+b+c)^2}{4} (Obviously since 3<43<4).

Hence we get:

a2+b2+c2>(a+b+c)24a^2+b^2+c^2>\dfrac{(a+b+c)^2}{4}

Rishabh Jain - 4 years, 11 months ago

By Power mean inequality (QAGH), QM(a,b,c)>AM(a,b,c)a2+b2+c23>a+b+c3a2+b2+c2>(a+b+c)23>(a+b+c)24  .QM(a,b,c) > AM(a,b,c) \Rightarrow \sqrt{ \dfrac{a^2+ b^2+c^2}3 } > \dfrac{a+b+c}3 \Rightarrow a^2 + b^2 + c^2 > \dfrac{(a+b+c)^2}3 > \dfrac{(a+b+c)^2}4 \; .

Pi Han Goh - 4 years, 11 months ago

a2+b2+c2>(a+b+c)244(a2+b2+c2)>(a+b+c)2    3(a2+b2+c2)>2(ab+ac+bc)a2+b2+c2>ab+ac+bc()    3(a2+b2+c2)>2(a2+b2+c2)>2(ab+ac+bc)3(a2+b2+c2)>2(ab+ac+bc)Hence proveda^2+b^2+c^2>\frac{(a+b+c)^2}{4}\\ 4(a^2+b^2+c^2)>(a+b+c)^2\\ \implies 3(a^2+b^2+c^2)>2(ab+ac+bc)\\ \boxed{a^2+b^2+c^2>ab+ac+bc\rightarrow (*)}\implies 3(a^2+b^2+c^2)>2(a^2+b^2+c^2)>2(ab+ac+bc)\\ 3(a^2+b^2+c^2)>2(ab+ac+bc)\\ \text{Hence proved}


()    a2+b2+c2ab+ac+bcThis is provable using a variety of ways,using Rearrangement, AM-GM,Algebraic Manipulation etc.I’ll show a proof using Algebraic Manipulation2a2+2b2+2c22ab+2bc+2ac    (a22ab+b2)+(b22ac+c2)+(c22ac+a2)0(ab)2+(bc)2+(ca)20Equality occurs when  a=b=c  However,since a,b,c are distinct,this precludes equality,hence  a2+b2+c2>ab+ac+bc(*)\implies a^2+b^2+c^2≥ab+ac+bc\\ \text{This is provable using a variety of ways,using Rearrangement, AM-GM,Algebraic Manipulation etc.I'll show a proof using Algebraic Manipulation}\\ 2a^2+2b^2+2c^2\geq 2ab+2bc+2ac\\ \implies (a^2-2ab+b^2)+(b^2-2ac+c^2)+(c^2-2ac+a^2)\geq 0\\ \boxed{(a-b)^2+(b-c)^2+(c-a)^2\geq 0}\\ \text{Equality occurs when}\; a=b=c\;\text{However,since a,b,c are distinct,this precludes equality,hence}\; a^2+b^2+c^2>ab+ac+bc

Abdur Rehman Zahid - 4 years, 11 months ago
×

Problem Loading...

Note Loading...

Set Loading...