Hi,
I'm going through the quantum computing course and it's a challenge. I was more or less able to follow, but reaching the chapter about cryptography and communication, I read something that to me seems to contradict the fundamentals of the course introduced in the first chapters.
My understanding: Any qubit state can be measured as |0> or |1>, and the measurement then collapses into the measured value in a fully deterministic manner. Therefore, no matter what the qubit's state was, once measured it can only be a "pure" |0> or |1>.
What we read in the communication chapter: " Alice will either get |+> or |-> when she measures, which will collapse Bob's qubit into that state as well. " (the implication is that Bob can then measure and get a |0> or |1> with a 50/50 chance) That doesn't compute for me. Since |+> and |-> are superposition states, where the qubit could be |0> or |1> with a 50/50 chance, how can a measurement make the qubit collapse to that state, instead of |0> or |1> ? How can Alice measure anything else than |0> or |1> ??
Any clarifications would be much appreciated !
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
There are no comments in this discussion.