Question about number theory

Hi, now I am learning Number Theory and I have a few questions which I want to discuss. My first question is "Can anyone list topics which appear in Number Theory". I just know few topics like divisibility, some equations (Diophantine, Pell, ...), ... My second question is that in this link: http://www.artofproblemsolving.com/Forum/viewforum.php?f=131, I see the topic "Basic Algebraic Number Theory and applications" and "Analysis and Number Theory", are these also kinds of Number Theory or they are different? Thank you.

Note by Anh Huy Nguyen
8 years, 2 months ago

No vote yet
5 votes

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

now quietly hear to me :::::::::::Number theory is a vast and fascinating field of mathematics, sometimes called (open curly double quote)higher arithmetic,(close curly double quote) consisting of the study of the properties of whole numbers. Primes and prime factorization are especially important in number theory, as are a number of functions such as the divisor function, Riemann zeta function, and totient function. Excellent introductions to number theory may be found in Ore and Beiler. The classic history on the subject (now slightly dated) is that of Dickson (2005abc). The great difficulty in proving relatively simple results in number theory prompted no less an authority than Gauss to remark that (open curly double quote)it is just this which gives the higher arithmetic that magical charm which has made it the favorite science of the greatest mathematicians, not to mention its inexhaustible wealth, wherein it so greatly surpasses other parts of mathematics.(close curly double quote) Gauss, often known as the (open curly double quote)prince of mathematics,(close curly double quote) called mathematics the (open curly double quote)queen of the sciences(close curly double quote) and considered number theory the (open curly double quote)queen of mathematics(close curly double quote).......................... there are several topics:::::::::::::::::abstract algebra | additive number theory | algebraic number theory | analytic number theory | arithmetic | computational number theory | congruence | Diophantine equation | divisor function | elementary number theory | Gödel's first incompleteness theorem | Gödel's second incompleteness theorem | number theoretic function | Peano's axioms | prime counting function | prime factorization | prime number | quadratic reciprocity theorem | Riemann zeta function | totient function..................are some of them............1]Algebraic Integer 2] Dedekind Domain 3] Picard Group 4]Algebraic Number 5]Dedekind Ring 6] Pisot Constant 7]Algebraic Number Theory 8] Fractional Ideal 9]Pisot Number 10]Algebraics 11]Global Field 12] Pisot-Vijayaraghavan C... 13]Chebotarev Density The... 14] Kummer Extension Ramification Group 15] Class Field 16] Local Class Field Theory 17]Weyl Sum 18] Cyclotomic Field 19] Local Field 20] Decomposition Group 21]Number Field SignatureAlgebraic Integer 22] Gelfond-Schneider Theorem 23] Schanuel's Conjecture 24]Algebraic Number 25]Gelfond's Theorem 26] Shidlovskii Theorem 27]Algebraically Independent 28] Hermite-Lindemann Theorem 29] Six Exponentials Theorem 30]Constant Problem 31]Hermite's Theorem Thue Constant 32] E-Function 33] Lindemann-Weierstrass... 34] Thue-Morse Constant 35]Equality Testing 36] Liouville's Constant 37] Transcendental Number 38]Four Exponentials Conj... 39] Liouville Number 40] Uniformity Conjecture 40]Gelfond's Constant 42]Prime Algebraic Number 43]Zero Testing 44]Gelfond-Schneider Cons... 45]Radical Integer

sayan chowdhury - 8 years, 2 months ago

Log in to reply

omg i laughed so hard at the (open curly double quote)

Soham Chanda - 8 years, 2 months ago

Thank you so much, Sayan. But I'm still confused about the difference between "algebraic number theory", " analytic number theory", "additive number theory", " computational number theory". Can you explain more specific for me? Thank you.

Anh Huy Nguyen - 8 years, 2 months ago

Buy Elementary Number Theory By David M Burton...It's awesome book for beginners... :D

Advitiya Brijesh - 8 years, 2 months ago
×

Problem Loading...

Note Loading...

Set Loading...