Q. A circle \(C\) of radius \(1\) is inscribed in an equilaterateral traingle \(PQR\). The points of contact of \(C\) with sides \(PQ\),\(QR\),\(RP\) are \(D\), \(E\) and \(F\) respectively. The line \(PQ\) is given by the equation \(y+\sqrt{3}x-6=0\) and the point \(D\) is \((\frac{3\sqrt{3}}{2},\frac{3}{2}\)). Further it is given that the origin and the centre \(C\) are on the same side of line \(PQ\).
Find the coordinates of , ,, and .
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
P: (3,3), Q: (23,0), R: (0,0)
D: (233,23), E: (3,0), F: (23,23)
The coordinates of P and Q (and of E and F) can be swapped.