A ratio is a relationship between two numbers (or two objects) that defines the quantity of the first in comparison to the second. For example, for most mammals the ratio of legs to noses is \( 4:1 \), but for humans, the ratio of legs to noses is \( 2:1 \). Ratios can also be written in fractional form, so comparing three boys with five girls could be written \( 3:5 \) or \( \frac{3}{5} \).
When two objects are proportional, it means that their ratios are equal. Specifically, two ratios, and , are "in the same proportion" or "proportional" if and only if:
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
There are no comments in this discussion.