Rational Trigonometry: Proofs of Platonic Solids

Lets say you did not believe in the beautiful platonic solids? What would be required for proof? Would you need to be convinced to derive the constructions for the proofs of the spreads between regular edges? I think that characteristic (no not angle) will be sufficient to give a strong comparison to the critical student.

Consider a regular quadrilateral. What are the spreads? how can you use the spread to to show proof of this?

Note by Peter Michael
3 years, 9 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

One can inherently construct Platonic solids using only the framework of rational trigonometry. I think there is a paper of Wildberger's that shows this, but I will check again.

For starters, consider an equilateral triangle in affine nn-space and take the nedians of the triangle with parameter 13\frac{1}{3} (these are like medians, but they go through the points one-third of the way from one point to another, taken in cyclical fashion). Try computing all the quadrances & spreads associated with this construction, and see what you can do when you generalise this to projective space.

P.S. This was an exercise of mine very early on in my PhD, but I haven't had the time to revisit this problem.

P.P.S. I do not think it is wise to characterise Platonic solids purely by their spreads; while I could be wrong here (Wildberger's book is a reference for this), two of the Platonic solids share the same spread... I will edit this section if incorrect, but regardless characterising them in this way takes away a lot of the geometrical beauty of them that comes as a result of the construction I have explained above.

A Former Brilliant Member - 3 years, 6 months ago

Log in to reply

What ways can be used to "show-off" this beauty(of Platonic solids)? Strictly algebra? Strictly geometric properties? Finite fields? Graph Theory? Arithmetic?

What would be the most student friendly way of being intrigued by these?

I think the main issue is developing a purposeful mindset for someone exploring such an abstract realm is key.

Peter Michael - 3 years, 6 months ago
×

Problem Loading...

Note Loading...

Set Loading...