I'll prove that:
y=0.x1‾x2=y = 0.\overline{x_1}x_2 =y=0.x1x2=x19\frac{x_1}{9}9x1
Let:
y=0.x1‾x2y = 0.\overline{x_1}x_2y=0.x1x2
10y=x1.x1‾x210y = x_1.\overline{x_1}x_210y=x1.x1x2
10y−y=9y10y - y = 9y10y−y=9y
x1.x1‾x2−0.x1‾x2=x1x_1.\overline{x_1}x_2 - 0.\overline{x_1}x_2 = x_1x1.x1x2−0.x1x2=x1
9y=x19y = x_19y=x1
9y9\frac{9y}{9}99y === x19\frac{x_1}{9}9x1
y=y = y=x19\frac{x_1}{9}9x1
Therefore, y=0.x1‾x2=y = 0.\overline{x_1}x_2 =y=0.x1x2=x19\frac{x_1}{9}9x1
Note by Yajat Shamji 11 months, 2 weeks ago
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
_italics_
**bold**
__bold__
- bulleted- list
1. numbered2. list
paragraph 1paragraph 2
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
This is a quote
# I indented these lines # 4 spaces, and now they show # up as a code block. print "hello world"
\(
\)
\[
\]
2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
@Zakir Husain, what do you think of my first proof?
Log in to reply
What first proof?
The one above?
A result for general case: Consider a number l=0.x1x2x3...xn‾l=0.\overline{x_1x_2x_3...x_n}l=0.x1x2x3...xn 10nl=x1x2x3...xn.x1x2x3...xn‾10^nl=x_1x_2x_3...x_n\large{.}\overline{x_1x_2x_3...x_n}10nl=x1x2x3...xn.x1x2x3...xn ⇒10nl−l=x1x2x3...xn\Rightarrow 10^nl-l={x_1x_2x_3...x_n}⇒10nl−l=x1x2x3...xn (10n−1)l=x1x2x3...xn(10^n-1)l=x_1x_2x_3...x_n(10n−1)l=x1x2x3...xn l=x1x2x3...xn10n−1\boxed{l=\dfrac{x_1x_2x_3...x_n}{10^n-1}}l=10n−1x1x2x3...xn 0.x1x2x3...xn‾=x1x2x3...xn10n−1\boxed{0.\overline{x_1x_2x_3...x_n}=\dfrac{x_1x_2x_3...x_n}{10^n-1}}0.x1x2x3...xn=10n−1x1x2x3...xn
Note :
x1x2x_1x_2x1x2 act as number with digits x1,x2x_1,x_2x1,x2 for example if x1=5x_1=5x1=5 and x2=8⇒x1x2=58x_2=8\Rightarrow x_1x_2=58x2=8⇒x1x2=58 dont confuse (x1x2=x1×x2x_1x_2\cancel{=}x_1\times x_2x1x2=x1×x2)
0.a‾=0.aaaaa...0.\overline{a}=0.aaaaa...0.a=0.aaaaa...
@Yajat Shamji - Here?
Derivation - v2−u2=2aSv^{2} - u^{2} = 2aSv2−u2=2aS We know that v−ut=a\dfrac{v - u}{t} = atv−u=a because v−uv-uv−u is the change in velocity, and dividing by time we just get change in velocity over time, which is nothing but acceleration. We also know that S=ut+12at2S = ut + \dfrac{1}{2}at^{2}S=ut+21at2 as it has been proved in the preface of a kinematics problem. Here is the image of the proof - Now we can use these equations to prove the one we used to solve the problem. In the equation, we don't have time, so let's find the value of time, and then substitute. v−ut=a\dfrac{v - u}{t} = atv−u=a can be changed to v−ua=t\dfrac{v - u}{a} = tav−u=t by some transposition. Let's substitute this in the other equation now. S=ut+12at2S=uv−ua+12av−ua)2S=uv−u2a+v2−2uv+u22aS=2uv−2u22a+v2−2uv+u22a2aS=2uv−2u2+v2−2uv+u22aS=v2−u2v2−u2=2aS\begin{aligned} S &= ut + \dfrac{1}{2}at^{2} \\ S &= u\dfrac{v-u}{a} + \dfrac{1}{2}a\dfrac{v-u}{a})^{2} \\ S &= \dfrac{uv-u^{2}}{a} + \dfrac{v^{2}-2uv + u^{2}}{2a} \\ S &= \dfrac{2uv-2u^{2}}{2a} + \dfrac{v^{2}-2uv + u^{2}}{2a} \\ 2aS &= 2uv-2u^{2} + v^{2}-2uv + u^{2} \\ 2aS &= v^{2} - u^{2} \\ v^{2} - u^{2} &= 2aS \end{aligned}SSSS2aS2aSv2−u2=ut+21at2=uav−u+21aav−u)2=auv−u2+2av2−2uv+u2=2a2uv−2u2+2av2−2uv+u2=2uv−2u2+v2−2uv+u2=v2−u2=2aS Hence Proved :)
Derivation - v2−u2=2aSv^{2} - u^{2} = 2aSv2−u2=2aS
We know that v−ut=a\dfrac{v - u}{t} = atv−u=a because v−uv-uv−u is the change in velocity, and dividing by time we just get change in velocity over time, which is nothing but acceleration.
We also know that S=ut+12at2S = ut + \dfrac{1}{2}at^{2}S=ut+21at2 as it has been proved in the preface of a kinematics problem. Here is the image of the proof -
Now we can use these equations to prove the one we used to solve the problem.
In the equation, we don't have time, so let's find the value of time, and then substitute.
v−ut=a\dfrac{v - u}{t} = atv−u=a can be changed to v−ua=t\dfrac{v - u}{a} = tav−u=t by some transposition. Let's substitute this in the other equation now.
S=ut+12at2S=uv−ua+12av−ua)2S=uv−u2a+v2−2uv+u22aS=2uv−2u22a+v2−2uv+u22a2aS=2uv−2u2+v2−2uv+u22aS=v2−u2v2−u2=2aS\begin{aligned} S &= ut + \dfrac{1}{2}at^{2} \\ S &= u\dfrac{v-u}{a} + \dfrac{1}{2}a\dfrac{v-u}{a})^{2} \\ S &= \dfrac{uv-u^{2}}{a} + \dfrac{v^{2}-2uv + u^{2}}{2a} \\ S &= \dfrac{2uv-2u^{2}}{2a} + \dfrac{v^{2}-2uv + u^{2}}{2a} \\ 2aS &= 2uv-2u^{2} + v^{2}-2uv + u^{2} \\ 2aS &= v^{2} - u^{2} \\ v^{2} - u^{2} &= 2aS \end{aligned}SSSS2aS2aSv2−u2=ut+21at2=uav−u+21aav−u)2=auv−u2+2av2−2uv+u2=2a2uv−2u2+2av2−2uv+u2=2uv−2u2+v2−2uv+u2=v2−u2=2aS
Hence Proved :)
@Percy Jackson ∫ABa⃗⋅ds⃗=∫ABdv⃗dt⋅ds⃗=∫ABdv⃗⋅v⃗\int_{A}^{B} \vec{a} \cdot d\vec{s} = \int_{A}^{B} \frac{d\vec{v}}{dt} \cdot d\vec{s} = \int_{A}^{B} d\vec{v} \cdot \vec{v}∫ABa⋅ds=∫ABdtdv⋅ds=∫ABdv⋅v =∫ABvxdvx+∫ABvydvy+∫ABvzdvz = { {}} \int_{A}^{B} v_x dv_x + {{{ }}} \int_{A}^{B} v_y dv_y + { { }}\int_{A}^{B} v_z dv_z=∫ABvxdvx+∫ABvydvy+∫ABvzdvz =12(vx,B2−vx,A2+vy,B2−vy,A2+vz,B2−vz,A2)=12(vB⃗⋅vB⃗−vA⃗⋅vA⃗)=\frac{1}{2}(v^2_{x,B} - v^2_{x,A} + v^2_{y,B} - v^2_{y,A} + v^2_{z,B} - v^2_{z,A}) = \frac{1}{2}(\vec{v_{B}} \cdot \vec{v_{B}} - \vec{v_{A}} \cdot \vec{v_{A}}) =21(vx,B2−vx,A2+vy,B2−vy,A2+vz,B2−vz,A2)=21(vB⋅vB−vA⋅vA) ⇒2∫ABa⃗⋅ds⃗=vB⃗⋅vB⃗−vA⃗⋅vA⃗\Rightarrow 2 \int_{A}^{B} \vec{a} \cdot d\vec{s} = \vec{v_{B}} \cdot \vec{v_{B}} - \vec{v_{A}} \cdot \vec{v_{A}}⇒2∫ABa⋅ds=vB⋅vB−vA⋅vA For constant a⃗\vec{a}a 2a⃗(s⃗B−s⃗A)=vB⃗⋅vB⃗−vA⃗⋅vA⃗2\vec{a}(\vec{s}_B - \vec{s}_A) = \vec{v_{B}} \cdot \vec{v_{B}} - \vec{v_{A}} \cdot \vec{v_{A}}2a(sB−sA)=vB⋅vB−vA⋅vA
That's fine.
Problem Loading...
Note Loading...
Set Loading...
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
@Zakir Husain, what do you think of my first proof?
Log in to reply
What first proof?
Log in to reply
The one above?
A result for general case: Consider a number l=0.x1x2x3...xn 10nl=x1x2x3...xn.x1x2x3...xn ⇒10nl−l=x1x2x3...xn (10n−1)l=x1x2x3...xn l=10n−1x1x2x3...xn 0.x1x2x3...xn=10n−1x1x2x3...xn
Note :
x1x2 act as number with digits x1,x2 for example if x1=5 and x2=8⇒x1x2=58 dont confuse (x1x2=x1×x2)
0.a=0.aaaaa...
@Yajat Shamji - Here?
Log in to reply
@Percy Jackson ∫ABa⋅ds=∫ABdtdv⋅ds=∫ABdv⋅v =∫ABvxdvx+∫ABvydvy+∫ABvzdvz =21(vx,B2−vx,A2+vy,B2−vy,A2+vz,B2−vz,A2)=21(vB⋅vB−vA⋅vA) ⇒2∫ABa⋅ds=vB⋅vB−vA⋅vA For constant a 2a(sB−sA)=vB⋅vB−vA⋅vA
That's fine.