In 18th century, Euler solved a well known problem, even Leibniz cannot solve it, either. This event made him become famous and confident. Basel problem shows \(\displaystyle \lim_{n \to +\infty} \left(\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\cdots+\dfrac{1}{n^2}\right)= \sum_{m=1}^{\infty} \dfrac{1}{m^2}=\dfrac{\pi^2}{6}\). It is a wonderful theory, but I’m not satisfied with this. We can use it to find more interesting conclusions. \[\begin{align*} \because \dfrac{\pi^2}{6} &=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\cdots \\ \therefore \dfrac{1}{2^2} \times \dfrac{\pi^2}{6} &=\dfrac{1}{2^2} \times \dfrac{1}{1^2}+\dfrac{1}{2^2} \times \dfrac{1}{2^2}+\dfrac{1}{2^2} \times \dfrac{1}{3^2}+\cdots \\ \therefore \dfrac{1}{2^2} \times \dfrac{\pi^2}{6} &=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+\cdots \\ \therefore \left(1-\dfrac{1}{2^2}\right) \dfrac{\pi^2}{6} &=\dfrac{1}{1^2}+\dfrac{1}{3^2}+\dfrac{1}{5^2}+\cdots \\ \therefore \dfrac{\pi^2}{8} &=\dfrac{1}{1^2}+\dfrac{1}{3^2}+\dfrac{1}{5^2}+\cdots \\ \dfrac{\pi^2}{24} &=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+\cdots \\ \therefore \left(\dfrac{1}{8}-\dfrac{1}{24}\right)\pi^2 &=\dfrac{1}{1^2}-\dfrac{1}{2^2}+\dfrac{1}{3^2}-\cdots \\ \therefore \dfrac{\pi^2}{12} &=\dfrac{1}{1^2}-\dfrac{1}{2^2}+\dfrac{1}{3^2}-\cdots \\ \end{align*}\] It’s true that Basel problem has an important relationship with Riemann \(\zeta\) function, because Basel problem is in order to find \(\zeta(2)\). About 100 years later, Riemann used one equation to build a bridge between functions and prime numbers. The equation is \(\displaystyle \zeta(s) =\sum_{n=1} ^{\infty} \dfrac{1}{n^s}= \prod_{p \text{ prime}} ^{\infty} (1-p^{-s})^{-1}\). Here is Euler's proof. \[\begin{align*} \because \zeta(s) &=\dfrac{1}{1^s}+\dfrac{1}{2^s}+\dfrac{1}{3^s}+\cdots \\ \therefore \dfrac{1}{2^s} \zeta(s) &=\dfrac{1}{2^s}+\dfrac{1}{4^s}+\dfrac{1}{6^s}+\cdots \\ \therefore \left(1-\dfrac{1}{2^s}\right)\zeta(s) &=\dfrac{1}{1^s}+\dfrac{1}{3^s}+\dfrac{1}{5^s}+\cdots \\ \because \dfrac{1}{3^s} \times \left(1-\dfrac{1}{2^s}\right)\zeta(s) &=\dfrac{1}{3^s} \times \dfrac{1}{1^s}+\dfrac{1}{3^s} \times \dfrac{1}{3^s}+\dfrac{1}{3^s} \times \dfrac{1}{5^s}+\cdots \\ \therefore \left(1- \dfrac{1}{3^s}\right) \left(1-\dfrac{1}{2^s}\right)\zeta(s) &=\dfrac{1}{1^s}+\dfrac{1}{5^s}+\dfrac{1}{7^s}+\cdots \\ \therefore \left(1-\dfrac{1}{5^s}\right)\left(1- \dfrac{1}{3^s}\right)\left(1-\dfrac{1}{2^s}\right)\zeta(s) &=\dfrac{1}{1^s}+\dfrac{1}{7^s}+\dfrac{1}{11^s}+\cdots \\ \therefore 1 &=\zeta(s)\left(1-\dfrac{1}{2^s}\right)\left(1- \dfrac{1}{3^s}\right)\left(1-\dfrac{1}{5^s}\right)\cdots \\ \therefore \zeta(s) &=\dfrac{1}{\left(1-\dfrac{1}{2^s}\right)\left(1- \dfrac{1}{3^s}\right)\left(1-\dfrac{1}{5^s}\right)\left(1-\dfrac{1}{7^s}\right)\cdots} \\ \therefore \sum_{n=1} ^{\infty} \dfrac{1}{n^s} &= \prod_{p \text{ prime}} ^{\infty} (1-p^{-s})^{-1} \end{align*}\]
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
I think so @Joshua Olayanju
Are you actually 13?
Log in to reply
My friend, you’re just 12, too.