RMO Part -9

1)Let 1<a1<a2<a3<.....a51<1421<a_1<a_2<a_3<.....a_{51}<142 for positive integers a1,a2,a3,.....a51a_1,a_2,a_3,.....a_{51}.

Prove that among the 50 consecutive differences some value must occur at least 12 times.

2)Prove that in any perfect square the three digits immediately to the left of the unit digit cannot be 101.

Try to solve these 2 problems in 1 hour.

Also try my set RMO.

#Algebra #NumberTheory #RMO #INMO

Note by Naitik Sanghavi
5 years, 8 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Hints 1) Try Pigeonhole

2) Mods.

Alan Yan - 5 years, 8 months ago

For question 2

The last four digits will be :

1010 - Not possible because perfect squares can't end in odd number of zeroes.

1011 - Not possible because perfect squares aren't of the form 4k + 3.

1012 - Not possible because perfect squares aren't of the form 4k + 2.

1013 - Not possible because perfect squares aren't of the form 8k + 5.

1014 - Not possible because perfect squares aren't of the form 4k + 2.

1015 - Not possible because perfect squares aren't of the form 4k + 3.

1016 - Not possible because perfect squares aren't of the form 16k + 8.

1017 - Not possible because perfect squares aren't of the form 5k + 2.

1018 - Not possible because perfect squares aren't of the form 4k + 2.

1019 - Not possible because perfect squares aren't of the form 4k + 3.

@naitik sanghavi Hope this works!

Ankit Kumar Jain - 4 years, 4 months ago

@Rajdeep Dhingra ,I want to ask you something can u please give me your email or whatsapp no.

My email - [email protected]. Reply asap.

naitik sanghavi - 3 years, 6 months ago
×

Problem Loading...

Note Loading...

Set Loading...