Secant Lines: "A secant line is a straight line joining two points on a function. (See below.) It is also equivalent to the average rate of change, or simply the slope between two points."
Secant Note: Secant line = Average Rate of Change = Slope
Tangent Lines: "A tangent line is a straight line that touches a function at only one point. The tangent line represents the instantaneous rate of change of the function at that one point. The slope of the tangent line at a point on the function is equal to the derivative of the function at the same point."
Tangent Note: Tangent Line = Instantaneous Rate of Change = Derivative
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
There are no comments in this discussion.